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Resumo 
Nos primeiros meses de 2020, a pandemia de COVID-19 afetou vários países, incluindo 

o Brasil. Devido à possibilidade de colapso nos sistemas de saúde e prejuízos 

econômicos, há um número crescente de pesquisas relacionadas, gerando um grande 

volume de artigos científicos, a exemplo da base CORD-19 (87,5 GB, ano base: 2022), 

disponibilizada pela Kaggle. Devido à rápida aceleração no crescimento da literatura 

sobre o novo coronavírus, dificultando o acompanhamento da comunidade de pesquisa 

médica, é necessário buscar formas de navegação e consulta sobre o que já é conhecido 

sobre o vírus Sars-Cov-2 e sua doença correlata. No intuito de facilitar esse processo, 

este trabalho apresenta a ferramenta CoviText: um motor de pesquisa da literatura 

médica sobre a COVID-19, desenvolvido utilizando técnicas de mineração de texto e 

aprendizado de máquina. 

Descritores: COVID-19; Aprendizado de Máquina; Mineração de Dados 
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Abstract 
In the first months of 2020, the COVID-19 pandemic has severely affected several 

countries, including Brazil. Due to the possibility of collapse in health systems and 

economic losses, there is an increasing number of related researches, generating a large 

volume of scholarly articles, such as the CORD-19 dataset (87.5 GB, base year: 2022), 

available at the Kaggle website. Due to the rapid acceleration in new coronavirus 

literature, making it difficult for the medical research community to keep up, it is necessary 

to find ways of browsing and consulting what is already known about the Sars-Cov-2 virus 

and its related disease. In order to facilitate this process, this work presents the CoviText 

tool: a search engine for the medical literature on COVID-19, developed using text mining 

and machine learning techniques. 

Keywords: COVID-19; Machine Learning; Data Mining 

 

Resumen 
En los primeros meses de 2020, la pandemia de COVID-19 afectó a varios países, incluso 

Brasil. Debido a la posibilidad de colapso de los sistemas de salud y pérdidas 

económicas, cada vez hay más investigaciones relacionadas, generando un gran 

volumen de artículos científicos, como la base de datos CORD-19 (87,5 GB, año base: 

2022), puesta a disposición por el Kaggle. Debido a la rápida aceleración en el 

crecimiento de la literatura sobre el nuevo coronavirus, lo que dificulta el seguimiento de 

la comunidad de investigación médica, es necesario buscar formas de navegar y 

consultar lo que ya se sabe sobre el virus Sars-Cov-2 y sus enfermedad relacionada. 

Para facilitar este proceso, este trabajo presenta la herramienta CoviText: un motor de 

búsqueda de literatura médica sobre COVID-19, desarrollado utilizando técnicas de 

minería de texto y aprendizaje automático. 

Descriptores: COVID-19; Aprendizaje automático; Minería de Dados 

Introduction 
As reported by the Brazilian Ministry of Health (1), COVID-19 is a disease caused 

by the coronavirus SARS-CoV-2 and displays a clinical status that goes from 

asymptomatic infections to severe respiratory condition. According to World Health 
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Organization (WHO) the majority of cases (around 80%) can display no symptoms, 

around 20% may need hospitalization as a consequence of respiratory complications and, 

of those, 5% will be required respiratory support machines as for respiratory failure. There 

was a large concern regarding the understanding of this virus given all information that 

was gathered as well as the knowledge of how to deal with the volume of infected people, 

so no essential health service got under too much load, and by doing so, causing loss of 

lives. 

On March 12, 2020, the CORD-19 dataset was published on Kaggle(2) website, a 

popular Data Science community platform. In this dataset, there are over a million articles 

and papers about multiple aspects of the coronavirus and its impact on different areas. 

Along with CORD-19 dataset, there are tasks asking important questions about its 

influence on the world around and also on our bodies and mind. All the texts available are 

organized and stored in JSON files, also containing a lot of information on the papers' 

metadata. 

Collecting the data in such organized fashion is a complex task itself and, as it 

stands, the dataset is ready for the application of data mining algorithms in order to get 

insights or even to offer tools for domain experts to manipulate and learn from. 

A great effort carried out by the data scientists has been focused in understanding 

the trends of infection and mortality rates on all regions of the globe, applying time series 

analysis and forecasting. Although it’s an important concern in regard to maintaining the 

hospitals under capacity and avoiding disasters, there are other areas that should be 

considered. 

In this work, we will discuss techniques used to break down the dataset into a 

machine learning friendly structure, and we present a tool developed to help extract 

information that can contribute to new insights. 

Related Work 
 Deep learning techniques used in natural language processing (NLP) have been 

applied for biomedical text mining models. According to Lee et al. (3), directly applying 

state-of-the-art NLP methodologies to biomedical text mining has limitations, because 

they are usually trained and tested mainly on datasets containing general domain texts, it 
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is difficult to estimate their performance on datasets containing biomedical texts. Also, the 

word distributions of general and biomedical corpora are quite different, which can often 

be a problem for biomedical text mining models. 

 Lee et al. (3) developed BioBERT, a domain-specific language representation 

model pre-trained on large-scale biomedical corpora, that significantly outperforms other 

models on the biomedical named entity recognition, biomedical relation extraction and 

biomedical question answering. 

 CovidBERT (4) is a biomedical relationship extraction model based on BERT that 

extracts new relationships between various biomedical entities. Specifically, it uses the 

pre-trained BioBERT model and train it on additional Covid-19 related corpus, including 

CORD-19 dataset. 

 Tian e Zhang (5) evaluated several deep learning models built on PubMedBERT, a 

pre-trained language model, with different strategies addressing the challenges of the 

multi-label classification task for automated topic annotation of COVID-19 literature.  Multi-

instance learning was used to deal with the large variation in the lengths of the articles, 

and focal loss function was used to address the imbalance in the distribution of different 

topics.   

Methods 

Text Mining 

 Text mining is the extraction process of useful information from text data. This 

entails the identification and extraction of patterns within the text using a plethora of 

techniques of statistical processing, machine learning and natural language processing. 

 Text mining can be used to discover new relationships not apparent in the data, in 

order to generate new hypothesis and automate the knowledge extraction from the data. 

Can be best used for text classification and trend detection. 

 One of the techniques studied in the text mining domain is the text encoding (or 

text embedding), as it’s an important concept needed for the further steps in this work. We 

can understand “embedding” as the vector representation of a text document as produced 

by a text transformation model. 
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The models that can be used, can have many levels of complexity, from a simple 

bag of words to a state-of-the-art machine learning model. They all have the same 

objective: extract the semantics of the text and encode it in a computational efficient 

format, namely a vector of N dimensions, being N of any arbitrary size or limited by the 

model implementation. 

The CoviText Application 

  CoviText provide a simple, easy to use, and intuitive interface to search for and 

view information about the COVID-19 pandemic from an academic perspective. The 

application provides a search bar and, optionally, a set of parameters that the user can 

set in order to modify the search criteria. After that, the application displays a list of articles, 

and the user is able to get articles to view and extract information from. 

Choice of Technologies 
To develop an application, it’s necessary to browse through the countless 

technologies available now-a-days and choose a maintainable and scalable one. By doing 

so, we can ensure that the application will be able to run for a long time and offer a good 

user experience. 

Embedding Model 

 In order to make it possible to relate the queried sentence to the database of 

articles, we use a machine learning algorithm to predict the sentence's relevance to the 

articles. Specifically, the BERT (6)  model is used as the primary embedding model. This 

model can later be used as a baseline, in this application, so future works can compare 

the embedding quality against distilled and specialized models. 

Database 
The database used for the storage of the data is PostgreSQL (7), a RDBMS 

(Relational Database Management System) that offers complete SQL functionality and a 

big collection of configuration and tuning possibilities that make it able to search efficiently 

thousands of documents. 
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As the database does not support vector embeddings natively, it’s necessary to 

add this functionality with an extension, there’s one available called vector and was 

created by a team of researchers (8). Using that extension, it’s possible to store, index and 

calculate the inverse cosine similarity between the embeddings inside the database. 

Back-End Server 
The Rust (9) language is used to code the back-end. It is a systems programming 

language focused on safe memory management and performance. Rust is a modern, 

statically typed, compiled language that is used to write high-performance, distributed 

systems and applications. Although there are other languages that can be used to write 

the back-end API, Rust offers a new approach by making it easier to scale horizontally 

(accepting more concurrent connections) if needed. 

Also, the Rocket (10)  library was used in the development of the back-end API 

middle-ware. It is a high-level, modern, zero-configuration and flexible web framework for 

Rust, that allows the writing of web applications in a way that is idiomatic for Rust. 

Front-End Server 
For the front-end API, an easy-to-use, modern, and responsive web framework was 

needed, and for that reason, Svelte was used (11). Svelte is a JavaScript framework 

designed to be used as a single page application. This framework showed good 

performance, was simple to iterate over, and that is crucial in getting the application into 

a usable state. To help style the application, a CSS framework called TailwindCSS (12) 

was used as it offers a lot of styling options, and it works with a different paradigm than 

the other frameworks, by focusing on the utility classes, we can create a myriad of 

compound designs and reuse components. 

Populating the Data 
 Before populating the data, a schema was needed to encode the correct 

relationships needed for the application. The following Entity Relationship diagram shows 

the schema used to encode the data: 
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Figure 1 – Entity Relationship was modeled using an application called PgModeler (13). 

Using the schema showed in Figure 1, it's possible to populate the database with 

the records from the CSV file that contains all metadata about the papers in the CORD-

19 dataset. Also making it possible to have multiple embedding models, so the user can 

pick and choose between them, comparing results and evaluating their accuracy in the 

returned papers list. 

CoviText Architecture 
The Figure 2 shows the architecture used to build the application, that covers 3 

(three) machines and 3 (three) code repositories. 

The first being the development machine, where the CORD-19 dataset resides. A 

Python script was created in order to mine the text data from the metadata CSV containing 

the records of the articles present in the corpus. This script was responsible for fetching 
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the data from disk and making a POST request to the insertion API of the server machine. 

The fetched text was preprocessed in order to remove anomalies or unusable records, 

e.g., empty titles or abstracts. 

 
Figure 2 – Architecture of the CoviText 
The second machine is responsible for the receiving, processing and storage of 

the data, as well as the serving of any query made. The receiving is taken care by the use 

of endpoints for the insertion API. 

The endpoints accept a snippet of text and pass it to the models, so they can 

perform the encoding to an embedding and that is stored in the database alongside the 

snippet. 

It’s also available endpoints for a search API, where they encode the incoming text 

and execute a comparison between the embeddings stored in the database, returning the 

quantity of records requested in order of similarity, calculated with the inverse cosine 

function. 

Inside the server machine it’s hosted the code for the front-end pages, made so 

they can ease the use of the application, providing hints to what is searchable within the 

database. The search page implements API provided by the back-end and parses the 

results, having it be showed in a more presentable way.  

Obstacles 
As the query time is crucial for any search engine, some optimizations were needed 

in order to get a better response time from the back-end. One of those optimizations was 
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to create a materialized view containing all embeddings from a single machine learning 

model, denormalizing some useful data from each text snippet and indexing it using the 

vector extension. Using that strategy, we got the response time unoptimized from around 

2 (two) seconds to 200 (two hundred) milliseconds. 

From the start of the development process to the current state, it’s now clear how 

much the tooling for building fast and modern applications is at a really mature state. Good 

interconnection between all the technologies that were used was crucial in making this 

tool a possibility. 

Some small obstacles are always present in any attempt to solve a problem, and 

this one is no exception. Those obstacles were the following: 

● Volume of the data. The dataset is really large in file size, making up 87.5 GB of 

text. As the initial plan was to use all the full text, after attesting that the results from 

the paragraphs inside the papers did not make good results, it was quick to assert 

only to use the title and abstracts, both increasing the quality and decreasing the 

load on the back-end. 

● Low latency queries. As state in the previous section, it is important for a search 

engine to have low latency, so the user can iterate over multiple queries until a 

relevant one is found. To achieve so, two optimizations were essential: Materialized 

Views; and Indexing. The former makes the data readily available for the most 

important query, that is, the search of relevant papers given a user input. The latter 

makes that the RDBMS does not have to fetch too much data into memory, 

speeding up the recall. 

Results and Discussion 
Search Interfaces are routines of any user web applications, being present in many 

applications and helping in navigation of content. Their design is different and simple, 

including an input text, which includes a search bar, and a list in cascade of 

title/description. 

Not having much to diverge from this theme, we implemented something simple 

and direct that compromises the desired function. When styling, we searched a good 

contrast between text and background so that everything is readable, besides the use of 
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an accessible color to people with some level of color-blindness. The page is rendered in 

the client’s machine and the layout is presented in the figure 3. 

 

 
Figure 3 – Application running on the development environment. 

 

The interface provide a simple search functionality, where the desired query can 

be typed in the text input field and confirmed by either pressing the enter key on the 
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keyboard or clicking the search button beside the search bar. The application is then going 

to create a request for the back-end API with some hard coded settings (that may become 

variable parameters in future versions). The request is going to be fulfilled and returned 

with a list of articles that show correlation with the queried text. The data is then showed 

in as a list in descending order of correlation. When any of the results are clicked, a modal 

with the full title and abstract text is shown (and for future versions there can be references 

pointing to where to access those resources). 

The application is now green lighting (14), and any feedback or bug reports can be 

sent to any one of the authors by email. 

CoviText as Framework 
 There is a different perspective to the work shown of the tool development, we can 

look at it as a framework of which it’s possible to build search engines for a different corpus 

and use-case. Using one of the many corpora as a starting point, the text mining tools, 

the front and back end and the database can be applied and yield results that may justify 

the semantic search approach instead of a pure text matching one. 

Conclusion 

Since the start of the coronavirus pandemic, there was created a task force for the 

gathering and understanding of all aspects regarding the virus and the disease it causes. 

In an attempt to converge the effort, the AI2 team and White house created the CORD-19 

dataset, in which there is a large volume of text data about the virus and it’s aspects. 

Using text mining techniques, the dataset was processed in order to create 

embeddings for each of the title and abstracts in the corpus. Those embeddings hold the 

semantics of the text they encode, so it was possible, by comparing each of those 

embeddings with each other, to check their similarity in terms of semantic content. We 

then harnessed this property by creating an application that generates an embedding as 

a result of a search done by a user and compares it to the database of embeddings 

created by the processing of the CORD-19 corpus. 
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The application was made using text mining libraries in Python, a back-end API 

written in Rust using the Rocket framework and for the front-end we used Svelte and 

TailwindCSS frameworks in the TypeScript language. 

The implementation was filled with many challenges regarding the volume of the 

corpus and the criteria for a low latency response. To overcome those, more of the 

technology available was used. For the large volume, Dask offered a way to process data 

without loading all of it on working memory, and for the low latency, the vector extension 

gave us indexing options to reorganize the records, making the query run faster. 

A possible next steps in the development of the application is the implementation 

of controls to pick and choose different embedding models, facilitating the comparisons 

between the results yielded. The extension used in the database to store and index the 

text encodings can be improved by using GPU acceleration, the project is open source so 

only the study and implementation is required. 
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