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Resumo
A resistência a antibióticos representa uma preocupação significativa para a saúde

global, particularmente em unidades de terapia intensiva (UTIs), onde o diagnóstico

rápido é essencial. Objetivo do estudo: Testar algoritmos de aprendizado de máquina

para prever a resistência bacteriana em UTIs; Métodos: Os fatores idade, gênero,

tipo de amostra, antibiótico testado e coloração de Gram das bactérias foram

retirados do banco de dados MIMIC-III e usados para treinamento de seis modelos

de aprendizado de máquinas. Resultados: O Extreme Gradient Boosting demonstrou

a maior precisão de previsão, com 84,53%. Conclusão: o aprendizado de máquina

poderia oferecer uma solução para a detecção precoce da resistência a antibióticos,

melhorando assim o cuidado do paciente e o manejo dos antibióticos.

Descritores: Resistência Microbiana; Aprendizado de Máquina; Unidade de Terapia

Intensiva

Abstract

Antibiotic resistance represents a significant concern for global health, particularly in

intensive care units (ICUs), where rapid diagnosis is essential. Study objective: To
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test Machine Learning algorithms for predicting bacterial resistance in ICUs;

Methods: Factors such as age, gender, sample type, tested antibiotic, and Gram

staining of bacteria were extracted from the MIMIC-III database and used for training

six machine learning models. Results: The Extreme Gradient Boosting showed the

highest prediction accuracy, at 84.53%. Conclusion: Machine Learning could offer a

solution for the early detection of antibiotic resistance, thereby improving patient care

and antibiotic management.

Keywords: Microbial drug resistance; Machine Learning; Intensive Care Units

Resumen
La resistencia a los antibióticos representa una preocupación significativa para la

salud global, especialmente en unidades de cuidados intensivos (UCI), donde el

diagnóstico rápido es esencial. Objetivo del estudio: Probar algoritmos de

aprendizaje automático para predecir la resistencia bacteriana en UCI; Métodos: Se

extrajeron factores como la edad, el género, el tipo de muestra, el antibiótico

probado y la tinción de Gram de las bacterias de la base de datos MIMIC-III y se

utilizaron para entrenar seis modelos de aprendizaje automático. Resultados: El

Extreme Gradient Boosting mostró la mayor precisión en la predicción, con un

84,53%. Conclusión: el aprendizaje automático podría ofrecer una solución para la

detección temprana de la resistencia a los antibióticos, mejorando así el cuidado del

paciente y el manejo de los antibióticos.

Descriptores: Farmacorresistencia Microbiana; Aprendizaje Automático; Unidades

de Cuidados Intensivos

Introduction
Antimicrobial resistance is escalating as a critical concern in healthcare,

predicted to cause up to ten million annual deaths by 2050 according to the World

Health Organization. (1) Estimates for the year 2019 suggest up to 1.27 million deaths

could directly be attributed to drug-resistant bacterial infections. (2) Traditional

detection methods like antibiograms are time-intensive, taking at least 24 hours for
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results. (3) While faster molecular and genetic assays exist, their cost often renders

them impractical for widespread use.

Early detection and treatment are vital; especially in sepsis cases, each hour's

delay in initiating adequate therapy significantly elevates mortality risk. (4) Moreover,

the antibiotics used to treat multidrug-resistant (MDR) bacteria usually come with a

range of unfavourable side effects, adding complexity to already critical patient

conditions.

Machine Learning (ML), a growing subfield of artificial intelligence, offers

potential solutions. Previous research in healthcare has explored ML for genomic

data processing to identify MDR genes, evaluating metabolism and cellular functions

for potential antibiotic targets, and employing natural language processing (NLP) for

antimicrobial stewardship. (5)

Intriguingly, recent research has indicated the feasibility of predicting MDR

organisms using only demographic and lab data. (6,7)Such an approach is particularly

advantageous in resource-limited settings, offering a fast and cost-effective clinical

decision-making tool. This study aims to extend this line of research by testing similar

predictive models on a larger dataset, seeking to replicate or exceed the accuracy

reported in earlier studies.

Materials and methods

The dataset

The study employed the MIMIC-III database, a comprehensive and publicly

accessible repository of ICU data collected from 2008 to 2014. Sourced from Philips

CareVue Clinical Information System and iMDsoft MetaVision ICU, the database

comprises a variety of data types including billing information, demographics,

medication records, and lab results. (8,9,10) It is maintained by the Massachusetts

Institute of Technology (MIT).

Data Extraction

Relevant data was extracted from the 'microbiology events' table, which

contains information on bacterial samples, susceptibility profiles, and patient
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identifiers. These identifiers link to the 'admissions' and 'patients' tables, facilitating

the extraction of demographic data. (11)

Antibiotic Susceptibility and Minimal Inhibitory Concentration (MIC) Interpretation

Antibiotic susceptibility was evaluated based on MIC values, representing the

minimal concentration of an antibiotic required to inhibit bacterial growth. Breakpoints

distinguishing sensitive, intermediate, and resistant samples were derived, although

the database documentation did not specify whether these were based on CLSI or

EUCAST standards. (12) Both CLSI and EUCAST define 'sensitive' strains as those

likely to be eradicated by the therapeutic concentration of the antibiotic in question,

while 'resistant' strains are unlikely to be affected. The 'intermediate' category is less

straightforward; its interpretation has evolved and varies between standards. (13,14)

For the purposes of this study, strains classified as 'intermediate' were considered

'sensitive', considering that therapeutic success could still be achieved through dose

modification or naturally higher concentrations of a given drug on the intended site of

action. (15)

Feature Selection and Data Merging

Key features were extracted from selected tables in the MIMIC-III database:

patient identifiers, gender, and date of birth were taken from the 'patients' table;

sample type, bacterial species, tested antibiotic, and susceptibility profiles were

extracted from the 'microbiology events' table; and admission date and ID were

selected from the 'admissions' table. Data from these tables were then combined

using inner joins, first between the 'admissions' and 'patients' tables, and

subsequently with the 'microbiology events' table. The merges were performed based

on subject ID and admission ID.

Data Cleaning

Entries lacking either bacterial species or tested antibiotics were dropped.

Observations with pending antibiogram results were also excluded. Age was

computed by subtracting the date of birth from the admission date. Patients listed

with an age over 90—a protected identifier shifted to 300 in the MIMIC-III
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database—were excluded to mitigate bias. The dataset was further refined to include

only adult patients (18 years and older).

Gram Stain and Sample Type

Although performing a gram stain of samples immediately after collection is

common, such results are not usually recorded. That is the case for the MIMIC-III

database, where only the final culture results are available. For this study, we instead

use the gram stain of the germ identified on the final culture results. Samples were

categorized by type: urine, sputum, blood culture, etc. Samples that could represent

colonization rather than infection, such as screening and swab samples, were

excluded.

Antibiotic Categories

The following classes and antibiotics were included in this study:

aminoglycosides (Gentamicin, Amikacin, Tobramycin), quinolones (Levofloxacin,

Ciprofloxacin), Cephalosporins (Cefazolin, Cefuroxime, Ceftriaxone, Ceftazidime,

Cefepime), Sulfamethoxazole/Trimethoprim, Carbapenems (Meropenem, Imipenem),

Glycopeptides (Vancomycin), Penicillins (Oxacillin, Penicillin, Ampicillin,

Ampicillin/Sulbactam, Piperacillin, Piperacillin/Tazobactam), Macrolides

(Erythromycin), Tetracycline, Clindamycin, Nitrofurantoin, Rifampin, Linezolid,

Chloramphenicol, and Daptomycin.

Observation Definition

An observation was defined as a unique combination of demographic data,

sample type, bacterial gram stain, and tested antibiotic. The outcome label for each

observation was the antibiotic susceptibility profile. Due to the multiple-drug testing

nature of antibiograms, a single antibiogram was the source of multiple observations.

Exploratory Data Analysis (EDA)

After the data preprocessing steps, the resultant dataset included 9,214

individual patients, generating a total of 210,559 observations. The average age in

the dataset was 64.34 years with a standard deviation of 15.85. Males constituted
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52.81% (4,866) of the dataset. Out of the total observations, 128,846 (61.19%) were

identified as gram-negative bacteria, and 152,607 (72.46%) were categorized as

sensitive to the tested antibiotics. Summary statistics are provided in Tables 1 and 2

for a comprehensive understanding of the data landscape.

Table 1 – Summary demographic statistics

Age (Years) Gender
Mean 65,34 Male (52,81%)

St.Dev 15,85 Female (47,18%)
1st quartile 55,03

2nd quartile 67,91
3rd quartile 78,24
Max 89,06

Table 2 – Summary sample statistics
Gram stain Category

Positive (37,82%) Sensitive (72,47%)

Negative (62,18%) Resistant (27,52%)
Type of sample

Urine (34,02%) Sputum (31,86%)
Blood (21,36%) Catheter tip (5,23%)

Tissue (2,92%) Peritoneal fluid (1,59%)
Bile (1,29%) Pleural fluid (0,07%)
Bronchial washings (0,06%) Joint fluid (0,02%)

Antibiotics (class)
Aminoglycosides (15,12%) Quinolones (11,04%)
Cephalosporins (20,25%) Sulfa/Trimethoprim (5,09%)
Carbapenems (7,13%) Penicillins (21,20%)
Others (20,59%)

Model Evaluation Metrics and Hyperparameter Tuning

● Train-Test Split

The dataset was randomly shuffled and split into a training set containing 90%

of the samples and a test set containing the remaining 10%, stratified by antibiotic
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resistance profiles. This shuffle-split process was executed prior to preprocessing to

avoid data leakage.

● Evaluation Metrics

For performance evaluation, confusion matrices were generated to calculate

true positives, true negatives, false positives, and false negatives. Other metrics such

as the Receiver Operating Characteristic (ROC) curve, precision, and recall were

also utilized. Due to their clinical relevance, sensitivity and specificity were also

chosen as evaluation metrics alongside the area under the ROC curve and overall

accuracy.
● Implementation Details

All models were implemented in Python. The RAPIDS library was chosen for

its GPU acceleration capabilities, facilitating quicker computation. Fine-tuning was

executed using Python's scikit-learn for grid search, XGBTune, and Keras Tuner for

the Deep Learning model built with TensorFlow's Keras package.

● Addressing Class Imbalance

The skewness of class distribution in the dataset can heavily influence the

model's performance, especially when the minority class (in our case, antibiotic-

resistant samples) is of greater clinical importance. Therefore, data balancing

techniques were employed to circumvent this issue. For balancing, we utilized the

Synthetic Minority Oversampling Technique (SMOTE). SMOTE generates synthetic

instances of the minority class based on the distance between a random observation

and its neighbors. (18)

Models were trained on two variations of the dataset: the original imbalanced

dataset and a balanced version achieved through SMOTE. This setup allowed us to

assess the impact of balancing strategies rigorously.

Results
Accuracy and area under the ROC curve for each model have been

summarized on table 3 and detailed below.
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Table 3 – Model metrics summary
Model Accuracy

(imbalanced/oversampled)

AUC

Logistic Regression 0.79 | 0.77 0.7874 | 0.7889

Support Vector Machine 0.79 | 0.78 0.7770 | 0.7878
K-nearest neighbors 0.80 | 0.77 0.8174 | 0.8021
Random Forest 0.79 | 0.79 0.7863 | 0.7948
Extreme Gradient Boosting 0.81 | 0.79 0.8453 | 0.8413
Multilayer Perceptron 0.79 | 0.78 0.7987 | 0.8092

Logistic Regression

For the imbalanced dataset, the best results yielded a sensitivity of 90.64%,

specificity of 48.65%, and an overall accuracy of 79.07%. The AUC was 0.7874. For

the oversampled dataset, the best results obtained were a sensitivity of 82.20%,

specificity of 64.31%, and an overall accuracy of 77.27%. The AUC was slightly

higher at 0.7889. ROC curves are displayed in Figure 1 below.

Figure 1 – Logistic Regression ROC curves.

Support Vector Machine

For the imbalanced dataset, the best results led to a sensitivity of 90.67%,

specificity of 49.09%, and an overall accuracy of 79.21%. The AUC (Area Under the

Receiver Operating Characteristic Curve) was 0.7770.

For the oversampled dataset, the optimal model led to a sensitivity of 83.57%,

specificity of 62.66%, and an overall accuracy of 77.81%. The AUC for this model
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was 0.7878. Both curves are shown in Figure 2 below.

Figure 2 – Linear Support Vector Machine ROC curves.

K-nearest Neighbours

For the imbalanced dataset, the best performing model had a sensitivity of

91.67%, a specificity of 48.67%, and an overall accuracy rate of 79.82%. The AUC

for this model was 0.8174.

On the other hand, for the oversampled dataset, the optimal setup exhibited a

sensitivity of 79.48%, a specificity of 70.47%, and an overall accuracy of 77.00%.

The AUC for this model was 0.8021. Both curves are shown in Figure 3 below.

Figure 3 – K-nearest neighbors ROC curves.
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Random Forest

For the imbalanced dataset, the optimal settings yielded a sensitivity of

93.87%, specificity of 40.18%, and overall accuracy of 79.08%. The AUC was

0.7863.

For the oversampled dataset, the best settings achieved a sensitivity of

85.41%, a specificity of 61.70%, and an overall accuracy of 78.88%. The AUC was

slightly higher at 0.7948. Both curves are shown in Figure 4 below.

Figure 4 – Random Forest ROC curves.

Extreme Gradient Boosting

For the imbalanced dataset, the best model had an accuracy of 81.11%,

sensitivity of 91.7%, specificity of 53%, and an AUC of 0.8453.
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For the oversampled dataset, the optimized parameters resulted in an

accuracy of 78.78%, sensitivity of 81.61%, specificity of 71.36%, and an AUC of

0.8413. Both curves are shown in Figure 5 below.

Figure 5 – Extreme Gradient Boosting ROC curves.

Multilayer Perceptron

For the imbalanced dataset, the best sensitivity was 52.92%, and the specificity was

88.79%, resulting in an overall accuracy of 78.91% and an AUC of 0.7987. For the

oversampled dataset, the best sensitivity was 59.89%, and the specificity was 85.58%,

resulting in an overall accuracy of 78.50% and an AUC of 0.8092. Both curves are shown on

Figure 6 below.

Figure 6 – Multilayer Perceptron ROC curves.
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Discussion
Our study successfully applied several Machine Learning algorithms to detect

antibiotic resistance using a minimal set of laboratory data. Among these, XGBoost

emerged as a standout, achieving an accuracy of 81.11%, a sensitivity of 91.7%, and

a specificity of 53.28%. While these figures might not meet the rigorous standards

expected of diagnostic tools in healthcare, it is crucial to recognize their efficiency

and scalability. We carried out all our training and testing on a single mid-range GPU,

with individual predictions taking seconds to compute.

The adoption of Machine Learning represents a paradigm shift in healthcare

research methodologies. Unlike traditional medical studies, which seek to establish

individual predictors' impact through rigorous control of confounding variables,

Machine Learning algorithms minimize prediction error by simultaneously evaluating

multiple features. This approach allows for a more dynamic and intricate

understanding of variable relationships.

However, our models had limitations, most notably their sensitivity to data

imbalances and outliers. Additionally, they required larger sample sizes than typically

available in single-research-center studies. To address these issues, methods like

few- shot learning, data augmentation, and transfer learning are actively being

refined. Furthermore, public databases like MIMIC-III could offer an invaluable

resource for training robust models capable of functioning in smaller, more specific

datasets.
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Epidemiological differences in hospital-acquired infections also pose

challenges. Our models were trained on data heavily influenced by the prevalence of

certain bacteria, which might not be universally applicable. For instance, the

MIMIC-III dataset, gathered from a medical center in Massachusetts, closely aligns

with the prevalence of gram-positive bacteria in North America, potentially limiting its

applicability in environments where gram-negative bacteria are more common.

Yet, this limitation may also be seen as a strength: Machine Learning models

could be fine-tuned to the unique epidemiological profiles of different healthcare

institutions. Such customized models could not only enhance patient-specific

decision- making but also offer hospitals a sophisticated tool for monitoring trends in

multidrug- resistant bacteria. Therefore, while there is still work to be done, the initial

results are promising and warrant further investigation into the application of Machine

Learning algorithms in healthcare.

Conclusion

This study evaluated the efficacy of Machine Learning models in predicting

antibiotic resistance using cost-effective, non-invasive techniques. Remarkably, even

with a limited number of features, most of the models achieved an accuracy rate

close to 80%. Future research may attempt to improve upon these results by adding

more variables, and to measure the impact of epidemiological factors on model

accuracy. As Machine Learning continues to evolve rapidly, such research is crucial

in advancing the development of efficient approaches to the problem of antibiotic

resistance.
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