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Resumo
Objetivo: Validar se um modelo multi-task (MTL) para classificação e segmentação de

tumores cerebrais é superior a um single-task (ST). Método: a arquitetura do modelo é

constituída de um encoder, que se bifurca em uma fully connected (classificação) e um

decoder (segmentação). Para o ST, apenas a ramificação de classificação foi

considerada. Ambos foram treinados utilizando a abordagem de 5-fold cross validation

com os datasets SARTAJ e Figshare. Resultados: O MTL alcançou acurácia de 95.99% ±

0.70% em comparação com 95.87% ± 1.01% do ST. Conclusão: Ambos os modelos

apresentaram desempenhos semelhantes, entretanto o MTL revelou algumas vantagens,

como uma maior estabilidade de métricas, resultado do desvio padrão menor em todas as

métricas. Em relação à literatura, o MTL obteve uma acurácia de apenas 3% abaixo do

melhor modelo entre os analisados, e também apresentou um número significativamente

menor de parâmetros, com até 187 vezes.

Descritores: Aprendizado Profundo; Neoplasias Encefálicas; Inteligência Artificial.
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Abstract
Objective: To validate whether a multi-task model (MTL) for brain tumor classification and

segmentation outperforms a single-task (ST) approach. Method: The model architecture

consists of an encoder, branching into a fully connected (classification) and a decoder

(segmentation). For the ST, only the classification branch was considered. Both were

trained using the 5-fold cross-validation approach with the SARTAJ and Figshare datasets.

Results: The MTL achieved an accuracy of 95.99% ± 0.70% compared to 95.87% ±

1.01% for the ST. Conclusion: Both models presented similar performances, however the

MTL revealed some advantages, such as greater stability of metrics, resulting from the

lower standard deviation in all metrics. Compared to the literature, the MTL achieved an

accuracy only 3% below the best model analyzed and also had a significantly lower

number of parameters, up to 187 times fewer.

Keywords: Deep Learning; Brain Neoplasms; Supervised Machine Learning; Artificial

Intelligence.

Resumen
Objetivo: Validar si un modelo multi-task (MTL) para la clasificación y segmentación de

tumores cerebrales es superior a un enfoque de single-task (ST). Método: La arquitectura

del modelo consta de un encoder, que se bifurca en una fully connected (clasificación) y

un decoder (segmentación). Para el ST, solo se consideró la rama de clasificación. Ambos

fueron entrenados utilizando el enfoque de validación cruzada de 5 pliegues con los

conjuntos de datos SARTAJ y Figshare. Resultados: El MTL logró una precisión del

95.99% ± 0.70% en comparación con el 95.87% ± 1.01% del ST. Conclusión: Ambos

modelos presentaron desempeños similares, sin embargo el MTL reveló algunas ventajas,

como una mayor estabilidad de las métricas, resultante de la menor desviación estándar

en todas las métricas. En comparación con la literatura, el MTL logró una precisión solo

un 3% por debajo del mejor modelo analizado y también tuvo un número

significativamente menor de parámetros, hasta 187 veces menos.

Descriptores: Aprendizaje Profundo; Neoplasias Encefálicas; Inteligencia Artificial.
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Introduction
Malignant brain tumors are a type of cancer that exhibits a disproportionate

mortality rate in relation to their incidence. In other words, although they are uncommon,

they have a significant impact on mortality(1). In the early 21st century, there was an

increase in the survival rate of patients with brain cancer, which can be associated, among

other factors, with early diagnosis(2). Given the above, the need for research directed

towards the development of more effective and precise diagnostic tools is evident(3).

In the context of healthcare, the use of Machine Learning techniques, particularly

Deep Learning, has emerged as a promising trend to assist in the diagnosis of medical

images(3). For example, Deep Learning is capable of assisting in the diagnosis of

COVID-19(4). Such models demonstrate the ability to learn patterns from existing data,

enabling their application to new datasets(5). In the field of computer vision, this is achieved

through convolutional layers that perform feature extraction(3). As an example of this, such

layers can detect patterns at different levels of abstraction, ranging from identifying the

presence or absence of edges in specific orientations to understanding more complex

combinations(5).

Multi-task Learning (MTL) represents a promising approach in the field of Deep

Learning, involving the training of a single model with multiple tasks (outputs)

simultaneously(6). Studies demonstrate that this approach offers the advantage of

accelerating the training process and improving efficiency in data utilization(7). The essence

of this approach lies in exploring the relationships existing between tasks, which can lead

to more efficient performance in each of them(6). This is possible because the model

shares representations and features among tasks, thereby enhancing its ability to

generalize better(8).

In healthcare studies, there is already evidence that the MTL approach can improve

the performance of Deep Learning models. Tardy and Mateus (2022)(9) achieved a 10%

increase in the Area Under the Curve (AUC) for breast cancer classification by adding

sub-tasks of classification and reconstruction. Oliveira et al. (2023)(10) developed a

classification model with the segmentation sub-task to assess the severity of chronic
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venous disorders and observed greater robustness and stability in training compared to

other approaches.

In head magnetic resonance imaging (MRI) images, a study developed a

segmentation model to identify small tumors with the reconstruction sub-task(11). The

results revealed that this approach proved to be superior in tumor segmentation with

enhancement. Moreover, the metrics of the proposed neural network were similar to the

Single-Task NVDLMED model. Regarding Single-Task models for brain tumor

classification, various studies have reported significant results. Gómez-Guzmán et al.

(2023)(12) achieved 97.12% accuracy with an InceptionV3-based architecture with 23.9M

parameters. Ullah et al. (2022)(13) obtained 98.91% accuracy; however, their architecture

was based on InceptionResNetV2, which has even more parameters (55.9M). Rasheed et

al. (2023)(14) devised a strategy to achieve a precise yet lighter and faster model,

constructing an architecture with 1.7M parameters and an accuracy of 97.84%.

In this context, this article presents a MTL model for the classification of head

magnetic resonance images while simultaneously performing the tumor region

segmentation task. This work will conduct two main comparisons. The first analysis will

evaluate the performance of the MTL model against a ST model to validate whether the

same benefits found in other works of better metrics(10) and greater stability(10) are found for

the problem studied. The second comparison will involve our model and those from the

literature, with an emphasis on performance and number of parameters.

Methods

Dataset

The data for this study originate from two datasets: SARTAJ(15) and Figshare(16).

From both datasets, images and corresponding classes were extracted. However, due to

the lack of information regarding segmentation masks in SARTAJ(15), the masks identifying

the lesion region in the images were exclusively obtained from Figshare(16). Additionally,

the "glioma" class from the SARTAJ(15) dataset was excluded due to identified data quality

issues, as reported by Filatov (2022)(17). In total, 5402 head magnetic resonance images
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were used, with 937 meningioma tumors, 901 pituitary tumors, and 500 without tumors

from SARTAJ(15), and 708 meningioma tumors, 930 pituitary tumors, and 1426 glioma

tumors referring to Figshare(16). Of these, 80% were set aside for training, and 20% for

testing. Thus, 56.72% of our data has annotated masks.

ST and MTL architectures

Both ST and MTL models take as input a grayscale image of size (128, 128). The

first part is an encoder, which consists of five blocks formed by: a convolutional layer with

filters of size (3, 3); a Batch Normalization layer; a MaxPooling2D layer with size (2, 2).

The number of filters in the convolutional layers started at 8 and doubled until reaching

128, ensuring that more complex features were represented by a greater number of

feature maps. After the encoder, two branches were implemented: one for classification

and another for segmentation.

The classification branch consists of a Flatten layer, followed by a Dense layer with

128 neurons, a Dropout layer with a rate of 0.5, and a Dense layer with 4 neurons

representing the classes (no tumor, meningioma, glioma, and pituitary). The segmentation

branch is a decoder consisting of 5 blocks similar to those in the encoder, with the

modification of replacing the MaxPooling2D layer with an UpSampling2D layer with size (2,

2). Additionally, the number of filters started at 128 and was halved across the blocks. At

the end of this branch, another convolutional layer with only 1 filter of size (1, 1) was

added to result in a mask of size 128x128. The final model had only 608,645 parameters.

When considering only the classification task (ST case), the model has 362,020

parameters.

Preprocessing

The images were normalized to the range [0, 1], and the labels were converted to

the One-hot encoding format. For the SARTAJ(15) dataset, a mask with all elements equal

to -1 was created for each image to identify the source.
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Loss function

To enable the model to learn both classification and segmentation tasks

simultaneously, a loss function based on two components was necessary. Equation 1

shows our total loss function associating real values (y) and predicted values (ŷ).

The first component is the loss function associated with classification (Equation 2),

which is expressed by the Categorical Focal Loss, where default values from the package

were chosen for alpha (0.25) and gamma (2). These parameters assist our model in

balancing the importance for each class and adjusting the focus of our model on harder to

predict examples.

The second component is the loss function associated with segmentation (Equation

3), which is expressed by the sum of two loss functions: Binary Focal Loss (Equation 4)

and Dice Loss (Equation 5). For Equation 4, the same constants as Equation 2 were

adopted, as they are standard package defaults.

(1)

(2)

(3)

(4)

(5)

In this work, given the presence of missing labels, specifically the absence of

segmentation masks for the SARTAJ(15) dataset, it was necessary to adapt the loss

function. Inspired by the approach of Tardy and Mateus (2022)(9), the following condition

was implemented during training: if the image belongs to SARTAJ(15), its prediction will

contribute only to the classification component. In other words, in Equation 1, only the first

component is considered for these samples.
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Fit

The model was trained for a maximum of 50 epochs using the default RMSProp

optimizer and a batch size of 32. The following callbacks were employed: EarlyStopping

monitoring the validation loss with a patience of 10; ModelCheckpoint saving the weights

that yield the lowest validation loss; and ReduceLROnPlateau reducing the learning rate

by half every 3 epochs without a decrease in the validation loss. The 5-fold

cross-validation approach was utilized.

Two scenarios were tested. In the first scenario, the model with classification and

segmentation branch (MTL), and in the second scenario only with the classification branch

(ST). Both were trained using a GPU P100.

Results and Discussion

ST and MTL models

The accuracy, precision and recall metrics obtained in the 5-fold cross-validation for

both ST and MTL models are presented in Table 1 and Table 2 for the training, validation,

and test sets. For the MTL model, as it presents a segmentation branch, the IoU metric

was also calculated. Additionally, the loss function results for the training and validation

sets are depicted in the form of graphs of the total loss function per epoch for ST (Graph

1), the classification component of the loss function per epoch for MTL (Graph 2) and the

total loss function per epoch for MTL (Graph 3). A sample of the masks predicted by the

MTL model can be visualized in Figure 1. Regarding processing time, ST presented an

average time of 49s to complete an epoch, in contrast to MTL which presented 50s.

Table 1 – ST model evaluation results

Set Accuracy Precision Recall
Training 99.38% ± 0.56% 99.39% ± 0.55% 99.37% ± 0.57%
Validation 95.72% ± 0.84% 95.80% ± 0.87% 95.60% ± 0.81%

Test 95.87% ± 1.01% 95.92% ± 0.95% 95.80% ± 1.06%

Table 2 – MTL model evaluation results

Set Accuracy Precision Recall IoU
Training 99.54% ± 0.34% 99.54% ± 0.34% 99.51% ± 0.34% 75.41% ± 2.85%
Validation 95.49% ± 0.76% 95.64% ± 0.82% 95.32% ± 0.64% 48.81% ± 1.16%
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Test 95.99% ± 0.69% 96.14% ± 0.75% 95.87% ± 0.71% 46.09% ± 1.03%

Graph 1 – Loss function per epoch for the training and validation sets for each fold of the ST

model

Graph 2 – Classification component of the loss function per epoch for the training and validation

sets for each fold of the MTL model

Graph 3 – Loss function per epoch for the training and validation sets for each fold of the MTL
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model

Figure 1 – Comparison of predicted masks on the test set with the real mask for: a) Meningioma

(Figshare(16)), b) Pituitary (Figshare(16)), and c) Glioma (Figshare(16))
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Regarding performance, both models presented similar metrics, with higher values

  in the training and testing set for the MTL, and in the validation set, for the ST. However, it

is essential to highlight that this evaluation was based on a single iteration of the 5-fold

cross-validation. A significant advantage observed in MTL was its greater stability, as can

be seen in Tables 1 and 2, where smaller standard deviations are noticeable across all

metrics in the all sets.

In Graph 3, it is possible to observe a growing difference over epochs between the

total loss functions of the training and validation sets, a phenomenon not visible in the

classification component (Graph 2). The explanation for this is evident in Table 2. The

segmentation metric (IoU) shows a significantly larger difference between sets than the

classification metrics. Thus, there are indications of overfitting for this task. However, as it

is a secondary task, with the sole purpose of maximizing the primary task (classification),

this is not a cause for concern. Additionally, by analyzing only the classification component

(Graph 2), it is noticeable that there was no overfitting for this task.

Comparison with state of the art

Table 3 compares our MTL model with those found in the literature based on the

number of classes, accuracy, precision, recall, IoU, and the number of parameters. For the

work of Ullah et al. (2022)(13), the number of parameters related to the used backbone was

considered. For our work, the parameter count was considered only for classification, with

the segmentation; the value is 0.6M. It is important to highlight that Gómez-Guzmán et

al.(12) and Rasheed et al. (2023)(14) used an additional dataset which was not used in this

work, while Ullah et al. (2022)(13) used only one dataset (SARTAJ(15)).

Table 3 – Comparative table with models from the literature. Notes: * Parameter value refers to the
backbone used. ** Parameter quantity is only for classification; with segmentation, it reaches 0.6M.

Articles Number of
classes

Accuracy Precision Recall IoU Number of
parameters

Gómez-Guzmán
et al.(12)

4 97.12 97.97 96.59 - 23.9M

Ullah et al.(13) 3 98.91 98.28 99.75 - 55.9M*
Rasheed et al.(14) 4 97.84 97.85 97.85 - 1.7M
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Proposed MTL
model

4 95.99 96.14 95.87 46.09 0.3M**

As shown in Table 3, the work presented similar results to those in the literature,

with only 3% difference in accuracy for the best model among the analyzed studies.

Additionally, the model has a significantly lower number of parameters, being

approximately 6 times lighter than the model in the work of Rasheed et al. (2023)(14), which

is the smallest model found in the literature. At the other extreme, the present model is

approximately 187 times lighter than that of Ullah et al. (2022)(13). This is an advantage of

our work, since with fewer parameters, the model becomes simpler and has a lower

capacity to memorize the data (overfitting), and tends to perform better with unseen data.

Another advantage of the model, in contrast to those found in the literature, is the

production of segmentation masks that show the lesion region. This output not only

provides additional information about the tumor's location but also corroborates the

efficiency of the decoder, responsible for feature extraction, as illustrated in Figure 1. In

this sense, it is possible to confirm that the classification performed by the network is

based on important features of the images.

Conclusion
This paper suggests a MTL model designed for tumor classification and

segmentation in skull magnetic resonance images and compares it with the ST approach.

The same approach could be used in other imaging domains. Both models ST and MTL

presented similar performances, however our results indicate an increase in accuracy,

precision, and specificity metrics using the MTL approach in test and training sets. Greater

stability was also noticed in the metrics of the MTL approach, which is a significant positive

point. Furthermore, our results are comparable to findings in the literature, with only 0.6M

parameters. This is important since, in addition to the guarantee of a more reliable model,

requires less computational resources, without compromising accuracy, highlights the

efficiency of our model.
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