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Abstract
Modern solutions for recording medical procedures represent cutting-edge

technology that is still emerging and facing challenges. This paper presents the Life

Surgery Box, a Brazilian standalone multi-modal and synchronized image video

recorder. Objective: presenting the development and prototyping of the equipment,

intended for use in both operating rooms and medical offices. Method: involves the

description of its hardware and software architectures, with a focus on an artificial

intelligence-based face-blurring algorithm. Results: highlight the performance

optimizations for efficient video processing and the artifacts generated by the

equipment. Conclusion: the proposed solution exemplifies technological

advancements and stands as an innovative contribution to healthcare technology.

Keywords: Laparoscopic Surgery; Video Recording; Artificial Intelligence

Resumo
Soluções modernas para registro de procedimentos médicos representam tecnologia

de ponta que ainda está surgindo e enfrentando desafios. Este artigo apresenta o

Life Surgery Box, um gravador de vídeo brasileiro autônomo de imagens

sincronizadas e multimodais. Objetivo: apresentar o desenvolvimento e prototipagem

do equipamento, destinado uso tanto em salas cirúrgicas quanto em consultórios
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médicos. Método: envolve a descrição de suas arquiteturas de hardware e software,

com foco em um algoritmo de desfoque facial baseado em inteligência artificial.

Resultados: destacam as otimizações de desempenho para processamento eficiente

de vídeo e os artefatos gerados pelo equipamento. Conclusão: a solução proposta

exemplifica os avanços tecnológicos e representa uma contribuição inovadora para a

tecnologia em saúde.

Descritores: Cirurgia Laparoscópica; Gravação de Vídeo; Inteligência Artificial

Resumen
Las soluciones modernas para registrar procedimientos médicos representan una

tecnología de vanguardia que aún está surgiendo y enfrentando desafíos. Este

artículo presenta Life Surgery Box, un videograbador brasileño autónomo de

imágenes sincronizadas y multimodales. Objetivo: presentar el desarrollo y

prototipado del equipo, destinado a ser utilizado tanto en quirófanos como en

consultorios médicos. Método: consiste en describir sus arquitecturas de hardware y

software, centrándose en un algoritmo de desenfoque facial basado en inteligencia

artificial. Resultados: destacan las optimizaciones de rendimiento para el

procesamiento eficiente de video y los artefactos generados por el equipo.

Conclusión: la solución propuesta ejemplifica los avances tecnológicos y representa

un aporte innovador a la tecnología de la salud.

Descriptores: Cirugía Laparoscópica; Grabación de Vídeo; Inteligencia Artificial

Introduction
Laparoscopic surgery has transformed surgical practices by providing less

invasive options compared to traditional open surgeries, resulting in reduced patient

discomfort and faster recovery times. The use of video recording in this scenario is

invaluable for medical education, training, and documentation (1). It not only spreads

knowledge among healthcare professionals but also advances surgical techniques,

enhances patient outcomes, promotes transparency in the medical field, and

encourages collaborative learning and continuous improvement in minimally invasive

surgery (2–4).

Analyzing successful operations helps identify various error sequences, aiding

surgeons in case preparation, error prevention, and mitigating their consequences (2).
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The operating room (OR) is a dynamic and intricate interprofessional environment

where various factors like distractions, skills, communication, and equipment issues

can affect intraoperative procedures and ultimately patient safety (5).

A study assessed how video recording affects colonoscopy quality,

recognizing the procedure's operator-dependent nature (6). Medical professionals

performed routine colonoscopies with and without prior video recording knowledge.

Results showed a 49% increase in inspection time and improved mucosal inspection

technique after awareness of recording, indicating immediate physician performance

enhancement.

Another study (7) examined how audio-video recording in the OR affects the

focus of both the surgeon and his assistant during laparoscopic surgeries. The

results indicated that recording reduces unnecessary conversation time and has the

potential to improve intraoperative safety and surgical outcomes.

Modern solutions for recording medical procedures and consolidating real-time

data from the operating room represent cutting-edge technology that is still emerging

and facing challenges (5). Despite many opportunities for improving quality and

exploring new applications, concerns about patient and staff privacy may limit routine

use. Potential solutions include creating deidentified videos that retain enough data

for their intended purposes (8).

Synchronization and image compositing during surgical event recording

provide significant benefits, improving documentation quality, analysis, and

communication in medicine. Aligning various imaging sources like endoscopic views,

OR views, and patient vitals into a synchronized composite image offers a

comprehensive view of the surgical procedure. This detailed documentation is

valuable for legal and educational purposes, offering an accurate and chronological

record of the surgical intervention.

This paper presents the development and prototyping of a standalone

equipment called Life Surgery Box, designed as a multi-modal and synchronized

image video recorder intended for use in both operating rooms and medical offices.

The subsequent sections detail the hardware and software architectures, with a focus

on AI-driven computer vision and face-blurring solutions.
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Methods
Conceived by RILAP and developed by CPQD Telecom R&D Center, the Life

Surgery Box is a Brazilian technology apparatus that provides independent input

video, audio, and data signal interfaces with integrated electrical isolation to be

connected to laparoscopic cameras, multiparameter monitors, bispectral index (BIS)

monitors, and operating room cameras. Figure 1 shows pictures of the equipment (a)

and the complete solution mounted in a mobility rack (b).

Independent signal sources are synchronously combined into a composite

image that is then recorded (with ambient audio) as a 1080p H.264 compressed

video file. Recorded events are securely stored using strong 256-bit advanced

encryption standard (AES) cryptography and can be promptly uploaded to a cloud

storage and backup environment upon request. A touchscreen video monitor enables

the user/operator to control the equipment through a graphical user interface (GUI)

and the integrated software system also incorporates a database event manager for

file retrieval, copy, and playback.

To address privacy concerns, video recordings can also be post-processed for

deidentification using embedded artificial intelligence (AI) to detect and blur human

faces in the OR camera view.

Figure 1 – Life Surgery Box equipment (a) and the complete solution mounted in a mobility

rack (b).
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Hardware Architecture and Design

Life Surgery Box electronic hardware architecture block diagram in shown in

Figure 2. The processing unit is based on a Jetson TX2 single board computer (SBC)

from Nvidia, which integrates a dual-core 64-Bit CPU, a quad-core ARM Cortex-A57

MPCore, and a 256-core GPU. Dedicated image processing and H.264 video codec

(coder/decoder) engines provide the necessary hardware acceleration for real-time

video capture, compositing, encoding, and recording.

Figure 2 – Life Surgery Box electronic hardware architecture block diagram.

The main video signal source interfaces are the laparoscopic camera,

multiparameter monitor, and the room camera. BIS monitor data are received by a

standard RS-232C serial interface. Audio is captured by a room microphone and

image screenshots can be taken by a foot switch. All these main input interfaces are

electrically isolated by a galvanic barrier, providing the means of patient protection

(MOPP) required by IEC 60.601-1 standard (9).

Additional available interfaces include a set of USB ports, Gigabit Ethernet,

Wi-Fi, HDMI output for an external video monitor, and audio outputs (line and

integrated speaker).

Data are stored in self-encrypting drives (SEDs), with two 1 TB solid state

drives (SSDs) connected to the SBC by a single-lane peripheral component

interconnect express (PCIe) interface. A redundant array of independent disks

(RAID) level 1 architecture was then implemented on the processor operating system

(OS) to provide disk mirroring, mitigating the risk of data loss.
J. Health Inform. 2024, Vol. 16 Especial - ISSN: 2175-4411 - jhi.sbis.org.br
DOI: 10.59681/2175-4411.v16.iEspecial.2024.1297 5



XX Congresso Brasileiro de Informática em Saúde
08/10 a 11/10 de 2024 - Belo Horizonte/MG - Brasil

All signal interfaces directly connected to electromedical equipment or to other

devices within the so-called patient environment (such as the microphone or foot

switch) are electrically isolated. The necessary galvanic barrier was implemented by

capacitive digital isolators with a 5 kV dielectric strength.

Software Architecture

As depicted in Figure 3, the Life Surgery Box software system was conceived

as a three-component architecture — the graphical user interface (GUI), the system

controller, and the video application, all built upon a Ubuntu-based OS (an Nvidia

customized Linux distribution).

Figure 3 – Software architecture block diagram with the main components.

The GUI was designed as a Web application, implemented using Node.js and

React and opened from an embedded Flask Web server by a Chromium browser

running in kiosk mode. The system controller module is primarily made up of Python

scripts that interact with the other software components, an SQLite database (DB),

and a Nextcloud content collaboration and storage platform, managing the equipment

functionality and starting other software operations. Finally the video application,

coded in C language and based on the GStreamer open source multimedia

framework, handles video and audio capture, image compositing, H.264 hardware

accelerated encoding, and recording. Device drivers were also developed and/or

adapted for the OS to access and control hardware components.

A user management system ensures authentication, granting access and

control to recorded events in accordance with a profile-defined policy.

Recorded events can undergo post-processing using AI to achieve

deidentification in the OR camera view. As illustrated in Figure 4, human faces are

detected by a computer vision-based model before being anonymized by a blurring
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algorithm, which applies a weighted average over a neighborhood of pixels around

each pixel in the image, smoothing color transitions and image details, thus creating

the desired blur effect.

Figure 4 – AI-based video post-processing with face detection and blurring.

Computer Vision – Strategy and Available Models

Face detection is a crucial task in Machine Learning (ML), essential for various

applications like facial recognition, security, and video analysis. Despite significant

progress driven by improved ML algorithms and enriched datasets, challenges such

as lighting variations, diverse poses, facial expressions, scale differences, and

occlusions (e.g., glasses and masks) underscore the ongoing complexity of the task.

For surgical environments, like those captured by the Life Surgery Box

equipment, a computer vision-based face detection solution was developed with the

following approach:

● Study and selection of an initial detection model;

● Annotation of a dataset specific to the problem;

● Creation of an experimental protocol;

● Model training for face detection with surgical environments'

specificities.

With a plethora of models already researched and published in the realm of

face detection, the selected approach was to delve into surveys and reviews

comparing them. In this work, the two most influential articles available at the time
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were meticulously selected for thorough examination (10–11), both aiming to describe

and compare ML techniques and models focused on face detection.

Other important factors were considered when choosing the base model,

including:

● Robustness: the model was expected to have been pre-trained on a

diverse database, so that it could easily adapt to specific use cases;

● Time Efficiency: while real-time inferences were not necessary, it was

crucial for the system to maintain moderate efficiency to prevent time

constraints from becoming prohibitive;

● Size: to be embedded in a system with low memory;

● Availability: given that the model would specialize in a new dataset,

open-source code or accessible neural network weights were essential

features.

Considering all these aspects, the selected model was RetinaFace (12, 13),

which is very robust since it was pre-trained on the WIDER FACE dataset (14), known

for having high data variability, containing faces of different people, in different

environments, with varied occlusions, lighting, and scales. Moreover, the model

presents an option with a relatively compact central structure — MobileNet-0.25 (15),

ensuring swift inference times and minimal memory usage.

Alternative models (16–19) were assessed, but when compared with RetinaFace

they were deemed less suitable for the unique requirements of the Life Surgery Box

solution.

Computer Vision – Dataset, Annotation, and Performance Metric Selection

The primary dataset used for model training comprised over 60 video

recordings of laparoscopic surgeries, captured by the Life Surgery Box equipment.

Due to the diverse nature of the provided video files, an evaluation was conducted to

ensure their validity and feasibility. Subsequently, video segments were extracted

from these surgical procedures, encompassing a range of lighting conditions, colors,

camera angles, number of participants, and scale, given their typically extended

duration lasting hours.

Data annotation was then performed using the CVAT (Computer Vision

Annotation Tool) platform. Faces in each frame of all video segments were labeled by
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drawing rectangles around them. A total of 57 one-minute video snippets, comprising

1800 frames at 30 fps, were annotated for model training.

There are established and widely recognized metrics to assess the

performance of models in face detection. The main problem consists of outlining

rectangular quadrants around human faces on video frames under analysis. Through

the comparison of two rectangles — one generated by the model and the other

representing the ground truth — the Intersection over Union (IoU) metric can be

employed to determine the accuracy of the predicted bounding box and assess its

validity as a detection. Following the analysis of both errors and successes, classic

metrics such as precision, recall, and others can be leveraged to evaluate the

performance of the model. Mean Average Precision (mAP), a widely adopted metric

for evaluating object detection systems, was selected for this work, offering a

comprehensive and robust assessment of the model's performance.

Computer Vision – Experimental Protocol and Model Training

The training of the RetinaFace model followed a conventional methodology,

involving the standard division of the dataset into three subsets: training, validation,

and testing. The training process involves using the training set to train the model,

while simultaneously assessing the model's performance using the validation set.

Out of the 57 video segments, 31 were selected for training, 12 for validation,

and 14 for testing. Given the dataset's relatively small size, a strategic methodology

was employed to ensure a balanced distribution of data across all sets. This involved

keeping the data distribution similar between them, considering key factors pertinent

to the task, which varied among different video recordings. These factors included

the average number of individuals present in the operating room, lighting conditions,

the visibility of the patient in a particular camera angle, the color of surgical team

attire, and facial scale. Other variables, such as the types of personal protective

equipment worn by the teams, remained consistent and did not require individual

evaluation in each video segment.

After constructing and partitioning the dataset, multiple experiments were

conducted involving variations of hyperparameters to identify the optimal combination

for model training. The search for these hyperparameters predominantly centered on

the arguments of the Stochastic Gradient Descent (SGD) optimization function within
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the PyTorch framework library. They include the Learning Rate, Momentum, and

Weight Decay. The best-performing values were determined as Learning Rate =

0.001, Momentum = 0.95, and Weight Decay = 0.05. Moreover, the initial learning

rate was reduced by 10% after the model had been trained on 1500 input examples,

and by an additional 1% after reaching 2750 input examples.

Upon the conclusion of the training phase, the final model underwent rigorous

evaluation using the test set to ascertain its overall efficacy and generalization

capabilities using the mAP metric.

Computer Vision – AI Code and Optimizations

The first version of the AI code was developed in Python, using the PyTorch

framework for the neural network implementation. Due to limitations on the

availability and possibility of the OS Kernel updates, the toolset used was Python 3.6,

PyTorch 1.4, and Torchvision 0.5.0.

Although face detection and blurring are executed in a post-processing phase,

the initial processing time requirement was 1x or, in other words, the same duration

of the original recorded video. However, initial tests showed this time to be 3x,

indicating the need for a code optimization. To identify possible bottlenecks, the AI

code was divided into ten sections, described in Table 1, each being measured to

evaluate the corresponding execution time.

The first bottleneck was found in step 3, with these array operations being

quite costly to perform in Python. To mitigate this, Cython was used to enable the

creation of Python extensions in C, thereby achieving performance levels closer to

that of native codes in this language. The second limitation was the process of saving

the final frames to disk. Initially, the FFmpeg tool was used to read frames from the

original video file and, after the face detection and blurring, save them to a buffer for

generating the post-processed video file. Specifically, the frame-saving process

accounted for about 70% of the total processing time. This was strongly optimized by

the use of GStreamer — the same open source multimedia framework used in the

main Video Application.

Table 1 – Ten sections of the AI source code with their corresponding descriptions.

Step Section Description
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1 Time before the main loop Time measured to perform tasks before the image
processing loop (e.g., loading the model into memory)

2 Crop image Crop the area of interest (OR camera view)

3 Image processing
Image conversion to float32, normalization, RGB channel
transposition, conversion to Numpy Array, and sending to
the GPU

4 Inference Performing inference with the neural network

5 Variance decoding Conversion of tensors with scores to Numpy Arrays

6 Index (score) filtering Removing indices (detections) below the minimum
confidence index

7 Index (score) sorting Sorting detections from highest to lowest indices

8 NMS application Non-Max Suppression application

9 Blur application Applying blur to the detected faces

10 Saving frame to disk Insertion of the frame into the buffer for generating the
complete video at the end of the process

Given the considerably faster speed of reading video frames compared to

processing them, recurrent memory overflows were observed during video

processing. To mitigate this issue, a queue with a capacity of 500 items was

implemented to control frame retrieval. Once it reached maximum capacity, the

retrieval of new frames was temporarily halted. As frames were processed and the

queue emptied, additional frames were fetched from the video source.

To speed up the process, the hardware codec available in the Jetson TX2

SBC was used by the GStreamer components nvv4l2decoder, nvv4l2h264enc, and

nvvideoconvert. It efficiently encodes and decodes raw video data into/from a

compressed format.

Four tests were conducted to evaluate the performance improvements:

● Test 1: Using GStreamer instead of FFmpeg;

● Test 2: Test 1 scenario with the addition of the TX2 HW decoder;

● Test 3: Test 2 scenario with the addition of the TX2 HW encoder;

● Test 4: Test 3 scenario with the addition of Cython and increasing the

Batch Size from 4 to 16.

These tests were performed with a short source video file lasting 182 seconds.

Its main parameters are the resolution of 1920x1080, H.264 encoding (Constrained

Baseline Profile), 30 fps, and a bitrate of 6992 kbps. The audio was encoded as

MPEG-4 AAC, Mono, with a sampling rate of 44100 Hz and a bitrate of 127 kbps.
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Results

Figure 5 presents a screenshot of the 1080p video recorded by the equipment,

showing the generated composite image with the endoscopic view, OR view (with

face blurring), vitals, BIS, and event data.

A portable document format (PDF) file is also created for each recorded event,

containing additional information including event identification, start/finish recording

time, place, medical record, medical procedure, and patient/physician names.

Figure 5 – Screenshot of the 1080p video-recorded composite image with the endoscopic

view, OR view (with face blurring), vitals, BIS, and event data.

Regarding the performance of the computer vision model, Table 2 shows the

mean Average Precision (mAP) of the original and fine-tuned RetinaFace models.

This metric was computed individually for every frame within the test set and then

averaged. While the training process led to a remarkable improvement exceeding

394%, it is noteworthy that the performance did not approach the optimal value of

one, indicating the inherently challenging nature of the use case. This underscores

the success of the work while also highlighting opportunities for further enhancement

in future endeavors.

Table 2 – Performances of the original and fine-tuned RetinaFace models.
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Model mAP (test set)
RetinaFace (original) 0.069

RetinaFace (fine-tuned in the dataset) 0.272

In terms of AI code optimization, Table 3 presents the test results for each of

the ten code sections, with time measurements conducted using Python's time

library. The total processing time achieved is approximately 1.2 times the duration of

the original video file (220 seconds over 182 seconds).

Table 3 – Processing time (in seconds) obtained in each section in the four tests performed.

Step Test 1 Test 2 Test 3 Test 4
1 0.014758890 0.0219874596 0.01590616246 0.02340747885

2 0.000426454 0.000447275495 0.000505133137 0.000631802246

3 0.195379955 0.2072014936 0.2185739399 0.3002965875

4 0.372694030 0.3274036893 0.387110648 0.1801836878

5 0.064589400 0.06971430126 0.06264788726 0.1797695116

6 0.004027067 0.004590305818 0.004044405445 0.005564976166

7 0.000799248 0.000914543702 0.000778997076 0.001024662513

8 0.015306156 0.01657104441 0.01396160592 0.01896454959

9 0.237992105 0.2609213749 0.2162554348 0.1693081815

10 0.094026695 0.09024851191 0.08021578599 0.1208485623

Total 333.15 sec 305.08 sec 290.21 sec 220 sec

After two prototyping cycles, a fully functional electronic hardware was

available and compliant with the necessary certification tests, such as

electromagnetic compatibility and interference (EMC/EMI), surge immunity, flicker,

and electrostatic discharge (ESD). High potential (HiPOT) tests also confirmed the

effectiveness of the means of patient protection (MOPP) insulation, limiting leakage

currents to less than 300 μA as required by IEC 60.601-1. A pilot production batch of

ten units was manufactured, facilitating the showcasing of the Life Surgery Box

solution at medical exhibitions in North/South America and Europe.

Conclusion

Video recording during laparoscopic procedures enhances medical practice,

aiding education, error identification, and patient safety. The development of the Life
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Surgery Box solution described in this paper exemplifies technological

advancements, incorporating AI-driven computer vision solutions for detecting and

blurring human faces to ensure privacy. Results highlighted the algorithm

optimizations, a screenshot of the 1080p video-recorded composite image with the

expected anonymization, and a pilot production batch manufacturing for worldwide

medical exhibitions.
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