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Resumo
Objetivo: Desenvolver modelos de IA capazes de reconhecer padrões pulmonares

pós-COVID em exames de tomografia computorizada. Método: Os radiologistas

analisaram 87 exames de TC para estabelecer padrões tomográficos para treinar e

testar modelos de aprendizagem profunda. O melhor modelo foi então selecionado

para ler oito exames completos. Resultados: O modelo escolhido apresentou uma

acurácia média de 92,21% na detecção de padrões pós-COVID.

Conclusão: Embora o tamanho da amostra fosse limitado, os testes com conjuntos

de imagens e exames completos apresentaram resultados promissores. A amostra

utilizada no estudo reflete o perfil epidemiológico encontrado na literatura.
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Descritores: Síndrome de Pós-covid-19; Inteligência Artificial; Multidetectores para

Tomografia Computorizada.

Abstract
Objective: Develop AI models capable of recognizing post-COVID lung patterns in

computed tomography scans. Method: Radiologists analyzed 87 CT scans to

establish tomographic patterns for training and testing deep learning models. The

best model was then selected to read eight full scans. Results: The chosen model

showed an average accuracy of 92.21% in detecting post-COVID patterns.

Conclusion: Although the sample size was limited, testing with image sets and full

scans showed promising results. The sample used in the study reflects the

epidemiological profile found in the literature.

Keywords: Postacute COVID-19 Syndrome; Artificial Intelligence; Multidetector

Computed Tomography.

Resumen
Objetivo: Desarrollar modelos de IA capaces de reconocer patrones pulmonares

post-COVID en tomografías computarizadas. Método: Los radiólogos analizaron 87

tomografías computarizadas para establecer patrones tomográficos para entrenar y

probar modelos de aprendizaje profundo. Luego se seleccionó el mejor modelo para

leer ocho escaneos completos. Resultados: El modelo elegido mostró una precisión

promedio del 92,21% en la detección de patrones post-COVID.

Conclusión: Aunque el tamaño de la muestra fue limitado, las pruebas con conjuntos

de imágenes y escaneos completos mostraron resultados prometedores. La muestra

utilizada en el estudio refleja el perfil epidemiológico encontrado en la literatura.

Descriptores: Post aguda de COVID-19; Inteligencia artificial; Tomografía

computarizada multidetector.

Introduction
The COVID-19 pandemic has been a significant event in recent world history,

having catastrophic effects on public health. However, it has also led to the
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development and improvement of new knowledge that has advanced several areas

of science(1,2).

Three years after the pandemic began, there are concerns about the follow-up

of infected patients, especially those who developed pulmonary complications due to

prolonged hospitalization, mechanical ventilation use, and other health conditions.

Postacute COVID-19 is a syndrome defined by the persistence of symptoms or

complications related to COVID-19 more than four weeks after the onset of the

disease that cannot be explained by other conditions(3,4). These symptoms include

dyspnoea, cough, and fatigue. In addition, radiological alterations can be observed

on chest computed tomography (CT) as lesions similar to fibrosis [5, 6, 7].

The COVID-19 pandemic coincided with the fourth industrial revolution, when

medicine benefited from combining machines with digital processes. This has

revolutionized diagnostics and the prediction of complications and provided

physicians with better solutions for problem-solving [8]. Artificial intelligence (AI)

algorithms have played a crucial role in the acute phase of COVID-19 in diagnosing

the disease, assessing pulmonary impairment, predicting severe forms, and

identifying other causes of pulmonary disease [9, 10]. AI tools can detect pulmonary

complications in the postacute phase and define various tomographic patterns

associated with respiratory alterations [1, 9]. According to this premise, this group

researched and developed AI models capable of identifying postacute COVID-19

chest tomographic patterns. In addition to the main objective, we also aimed to

examine the radiological results of the exams used to create the models and to test

these models on a group of post-COVID-19 patients. Also, It should be noted that no

other studies related to the diagnosis of postacute COVID-19 by Machine Learning

using images were found in the literature.

The rest of the paper is divided into three more sections. The Methods section

presents related work and all the methodologies involved in the investigations to

identify the best models for classifying postacute COVID-19 patterns. The Results

section presents and discusses the performance of the models evaluated. Finally, the

last section concludes and indicates the possibility of continuing the work.
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Methods

Sample Selection

The authors selected 87 chest CT scans of patients diagnosed with postacute

COVID-19 between July 2021 and May 2022 at the post-COVID outpatient clinic of

the Policlínica Piquet Carneiro (PCC) of the State University of Rio de Janeiro

(UERJ). To develop the models, the research group used 29 exams, and the best

model among the investigated ones was tested with complete exams from eight

patients. All patients in the study had their COVID-19 diagnosis confirmed through

rRT-PCR tests. The researchers gathered information from electronic medical

records and the RIS/PACS system of the Imaging Service at HUPE, UERJ. To be

eligible for the study, patients needed to be over 18 years old, of any sex, and have

had persistent respiratory symptoms for over four weeks after the onset of the

disease. All exams were performed in inspiratory and expiratory apnoea. Patients

were excluded from the study if their chest CT exams were of poor technical quality

or if they had acute lung disease unrelated to COVID-19 that could explain their

respiratory symptoms.

Computed Tomography

The medical team used inspiratory, expiratory, and high-resolution

reconstruction (HRCT) techniques to conduct the chest CT scans. They utilized

64-channel multidetector equipment (Brilliance 40, Philips Medical Systems,

Cleveland, OH, USA) with specific settings, including a reading time of four seconds,

current of 458 mA, voltage of 120 kV, and thickness of two mm, with a distance

between the slices of one mm. No iodinated contrast medium was used during the

scans.

A group of four radiologists with more than ten years of chest radiology

experience analysed the CT scans without any knowledge of the patient's clinical

information. They looked for various abnormalities, including ground-glass opacities,

crazy paving, consolidations, parenchymal bands, inverted halo pattern, halo sign,

fibrosis-like lesions, peripheral vascular ectasia, and the presence of air trapping.

After careful analysis, they classified the exams into preestablished tomographic

patterns, including normal (NP), reabsorption (RP), small airway disease (SADP),
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fibrosis-like lesions (FLLP), and nonspecific interstitial pneumonia-like lesions

(NSIPP) [9].

Methodology for Building Models based on Artificial Intelligence

This study was based on two classical deep learning neural network

architectures: VGG-11 [11] and MobileNetV2 [12]. The latter is a network developed

by Google, which is very similar to the original MobileNet but has fewer parameters.

Our decision to use these methodologies was based on preliminary experiments and

the results found in related works [9]. These architectures had previously trained

models, which allowed for transfer learning, a crucial factor given the limited number

of images per pattern. Starting from scratch with such a small dataset would not have

produced an adequate result [13, 14].

Database

We used a database of 2187 images from various patients to build the models.

The distribution of slices between post-COVID-19 and normal patterns was as

follows: PLSF: 355; PDPVA: 244; PLSPINE: 491; PR: 481; Normal pattern during

inspiratory apnoea: 544 and Normal pattern during expiratory apnoea: 271.

Since the groups were unbalanced, we selected 40 images (approximately

10%) for validation and 40 images for testing (approximately 10%) from each group,

leaving the rest for training. These images were kept separate for each step. The

final model test was conducted using a set of slices not used in the development

process.

The augmentation process was utilized to compensate for the limited number

of training images, creating new images from the original ones. The conventional

techniques of cropping, rotating, and translating were applied. However, the test

dataset was not processed with this method [15, 16].

The Institutional Review Board of Hospital Universitario Pedro Ernesto

(HUPE) approved the research with reference number 1363230.1.0000.5282. The

consent form was waived, as only the hospital's database was used.
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Models

It was developed three models using selected images (slices) of

post-COVID-19 patterns. The objective was to evaluate the accuracy of these models

in recognizing patterns in the slices. Next, the models were tested for pattern

recognition in complete scans of eight patients. This second stage simulated a

real-life situation where the model would be used to diagnose the type of pattern

present in the tomography.

Two-Stage Model

The first model classified images in two stages using a hierarchical system.

First, a neural network model was trained to differentiate between normal slices and

those with post-COVID-19 characteristics, such as resorptive patterns, fibrosis-like

lesions, NSIP-like lesions, and small airway disease. Slices classified as normal in

the first stage were not analysed further in the second stage, which focused on

identifying four post-COVID-19 patterns in the remaining slices.

Inspiration/Expiration Model

This model discriminated the post-COVID patterns using two submodels. One

submodel analysed images taken with expiratory apnoea to evaluate small airway

disease (SADP). The other submodel evaluated RP, FLLP, and NSIPP using images

taken conventionally with inspiratory apnoea. The two submodels produced separate

classifications but together identified all expected patterns on CT. The first submodel

identified exams with and without small airway disease, while the second submodel

differentiated normal exams from those with RP, SADP, FLLP, and NSIPP.

Single-Stage Model

The third model examined the slices and identified four post-COVID-19

patterns: RP, SADP, FLLP, and NSIPP. It was designed to classify only images with

abnormal patterns to prioritize the model's efforts in distinguishing post-COVID-19

patterns.

J. Health Inform. 2024, Vol. 16 Especial - ISSN: 2175-4411 - jhi.sbis.org.br
DOI: 10.59681/2175-4411.v16.iEspecial.2024.1331 6



XX Congresso Brasileiro de Informática em Saúde
08/10 a 11/10 de 2024 - Belo Horizonte/MG - Brasil

Results

Sample Characterization

Out of the 29 patients whose images were used for this study, 19 were women

(65.5%). The average age of the patients was 60, with a standard deviation of 13

years and a range of 35 to 88 years. On average, patients underwent radiological

examinations 8.8 months after the onset of symptoms.

The most reported symptoms of postacute COVID-19 were dyspnoea and

fatigue (82.4%) and cough (42.3%). Comorbidities were present in 23 patients

(79.3%), with hypertension (58.6%) and diabetes mellitus (44.8%) being the most

reported.

The most common CT findings were ground-glass opacities in 86.2% of

patients, septal thickening in 62.1%, air trapping in 51.7%, parenchymal bands in

55.2%, bronchiectasis in 41.4%, peripheral vascular ectasia in 34.5%, subpleural

lines in 34.5%, volumetric reduction in 13.8%, signs of bronchiolitis in 10.3%, crazy

paving in 10.3%.

The CT scans revealed the following patterns: resorptive pattern (69%) (Fig.

1a), small airway disease pattern (31%) (Fig. 1b), fibrosis-like lesion pattern (24%)

(Fig. 1c), a pattern of lesions similar to NSIP (10%) (Fig. 1d), and normal results

(7%). Notably, some exams showed more than one pattern.

Figure 1 - Axial CT scan of the chest in the parenchyma window: Resorption pattern (a),
showing ground-glass opacities in the subpleural regions(arrows); Small airway disease
pattern (b), showing areas of air trapping (arrows); Fibrosis-like lesion pattern (c), showing
reticular opacities associated with bronchial ectasias (arrows); Pattern of lesions similar to
NSIPP (c), showing small subpleural reticular and ground-glass opacities

(a) (b) (c) (d)

The test results of eight patients, identified anonymously as numbers one

through eight, showed the following patterns: Patient one: FLLP; Patient two: FLLP;

Patient three: FLLP and SADP; Patient four: FLLP; Patient five: RP; Patient six: FLLP

and RP; Patient seven: SADP and Patient eight: RP.

J. Health Inform. 2024, Vol. 16 Especial - ISSN: 2175-4411 - jhi.sbis.org.br
DOI: 10.59681/2175-4411.v16.iEspecial.2024.1331 7



XX Congresso Brasileiro de Informática em Saúde
08/10 a 11/10 de 2024 - Belo Horizonte/MG - Brasil

Two-Stage Model

During the initial stage of separating normal and post-COVID exams, the

MobileNetV2 architecture was utilized, as it provided the best results. The accuracy

values for training and validation were 97.47% and 96.59%, respectively, as shown in

Fig. 2a. In Fig. 2b, the confusion matrix for the test phase is shown, which displays

an accuracy of 96.59%, with only three errors out of 88 samples.
Figure 2 - Accuracy in the MobileNetV2 training and validation sets in the first layer of the
hierarchical classification (97.47% in the 7th epoch) (a) and Confusion matrix of the
MobileNetV2 test step in the first layer of the hierarchical classification (96.59%)(b)

(a) (b)

In the second stage of the study, we used the VGG-11 architecture, which we

found to be better than MobileNetV2. Fig. 3a displays the accuracy graph during the

model's training and validation, which showed an accuracy rate of 97.96%. During

the testing phase, the model's accuracy was 97.73% (Fig. 3b). However, we

observed that the model sometimes confused FLLP and RP.

Inspiration/Expiration Model

We utilized the MobileNetV2 design to analyse images in expiratory and

inspiratory apnoea. Based on the graph illustrated in Fig. 4a, we achieved 99.7% and

99.0% accuracy in the training and validation stages, respectively, when categorizing

images in expiratory apnoea. Fig. 4b displays the confusion matrix from the test

phase, which had an accuracy of 90.8%. We observed that the model performed

slightly worse (statistically) than the single-stage model during the test phase.

Regarding images in inspiratory apnoea, the training and validation graphs in

Fig. 5a demonstrated accuracies of 99.91% and 98.0%, respectively. The test phase

confusion matrix in Fig. 5b shows an accuracy of 99.6%.
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Figure 3 – Accuracy and loss in the VGG-11 training and validation sets in the second layer
of the hierarchical classification (97.96% in the 7th epoch) (a); Confusion matrix of the
VGG-11 test step in the second layer of the hierarchical classification (97.73%). FLLP =
fibrosis-like lesion pattern; NSIPP = nonspecific interstitial pneumonia pattern; RP =
resorption pattern; SADP=small airway disease pattern (b)

(a) (b)

Single-Stage Model

The accuracy results for the MobileNetV2 architecture are shown in Fig. 6a.

The training phase had an accuracy of 99.80%, and the validation phase had an

accuracy of 99.0%. As shown in Fig. 6b, the confusion matrix for the test phase

indicates an accuracy of 99.20%. The model correctly classified 60 slices as NSIPP

and 60 slices as SADP, but it made two errors by confusing FLLP and RP.
Figure 4 - Accuracy of MobileNetV2 in the training and validation sets with the classification
model for the expiration exam (99.0% validation accuracy in the 6th epoch) (b); Confusion
matrix of MobileNetV2 test step for expiration classification with 90.8% accuracy. NonSADP =
non-small airway disease pattern; SADP = small airway disease pattern (b)

(a) (b)
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Figure 5 - Accuracy of MobileNetV2 in the training and validation sets with the classification
model for the inspiration exam (98.0% validation accuracy in the 12th epoch) (a); Confusion
matrix of the MobileNetV2 test step for inspiration classification with 99.6% accuracy. FLLP =
fibrosis-like lesion pattern; NSIPP = nonspecific interstitial pneumonia pattern; RP =
resorption pattern; SADP = small airway disease pattern (b)

(a) (b)

Application of the Single-Stage Model in a Sample of Eight Patients

In the next research step, we used the single-stage model to analyse

complete CT exams of patients with post-COVID-19 patterns. Instead of analysing

slices from different patients, the model looked at sequential slices from a single

patient. We randomly selected eight patients from a database of 87, anonymized

their exams, and assigned them numbers one through eight. These patients

exhibited the following patterns: RP (Patients 3, 5, 6 and 8), SADP (Patients 3 and

7), and FLLP (Patients 1,2,4 and 6). The model's accuracy was 100% for Patient 1

with FLLP (Fig 7a), Patient 3 with RP/SADP (Fig 7b), Patient 6 with FLLP/RP (Fig 7c)

and Patient 7 with SADP (Fig 8a). For Patient 4 with FLLP (Fig 8b), the accuracy was

93.46%, but some slices were confused with RP. The accuracy for Patients 5 and 8

with RP was 80% (Fig 8c and 9a).
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Figure 6 - Accuracy of MobileNetV2 in the training and validation sets with the direct
classification model for post-COVID patterns (99.0% in the 8th epoch) (a) and Confusion
matrix of the MobileNetV2 test step in direct modelling (99.20% accuracy). FLLP =
fibrosis-like lesion pattern; NSIPP = nonspecific interstitial pneumonia pattern; RP =
resorption pattern; SADP = small airway disease pattern(b)

(a)
(b)

Figure 7 - Confusion matrix for Patient 1 in the direct classification model of post-COVID
patterns – 100% accuracy. FLLP = fibrosis-like lesion pattern; RP = resorption pattern; SADP
= small airway disease pattern (a); Confusion matrix for Patient 3 in the direct classification
model of post-COVID patterns – 100% accuracy. FLLP = fibrosis-like lesion pattern; RP =
resorption pattern; SADP = small airway disease pattern (b); Confusion matrix of Patient 6 in
the direct classification model of post-COVID patterns – 100% accuracy. FLLP = fibrosis-like
lesion pattern; RP = resorption pattern; SADP = small airway disease pattern (c)

(a) (b) (c)
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Figure 8 - Confusion matrix for Patient 7 (a); Patient 4 (b) and Patient 5 (c) in the direct
classification model of post-COVID patterns – 100% accuracy. FLLP = fibrosis-like lesion
pattern; RP = resorption pattern; SADP = small airway disease pattern (a); Confusion matrix
for Patient 4 in the direct classification model of post-COVID patterns – 93.46% accuracy.
FLLP = fibrosis-like lesion pattern; NSIPP = nonspecific interstitial pneumonia pattern; RP =
resorption pattern; SADP = small airway disease pattern (b); Confusion matrix for Patient 5 in
the direct classification model of post-COVID patterns – 80% accuracy. FLLP = fibrosis-like
lesion pattern; RP = resorption pattern; SADP = small airway disease pattern (c).

(a) (b) (c)

Patient 2 had patterns of resorption (PR) and fibrosis-like lesions (FLLP) (Fig

9b), with an accuracy of 75,63%. Overall, the single-stage model had an average

accuracy of 91.14% in detecting the three post-COVID-19 patterns RP, FLLP, and

SADP.
Figure 9 - Confusion matrix of Patient 8 in the direct classification model of post-COVID
patterns – 80% accuracy. FLLP = fibrosis-like lesion pattern; RP = resorption pattern; SADP
= small airway disease pattern (a); Confusion matrix for Patient 2 in the direct classification
model of post-COVID patterns – 75.63% accuracy. FLLP = fibrosis-like lesion pattern; RP =
resorption pattern; SADP = small airway disease pattern(b)

(a) (b)

Discussion
The goal of the models was to use AI to recognize fixed patterns. These AI

algorithms work best when there are few diagnostic options and consistent criteria

reproducible by radiology. Developing the models was challenging because we had
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to balance the available images for each abnormal and normal pattern and enable

learning with a small number of images in each class (post-COVID pattern).

However, we achieved this through augmentation techniques and transfer learning.

Although this is only a preliminary work, adding more images to the model’s

development database can improve its performance. The accuracy of the model for

identifying the patterns in the slices was excellent, giving us great hope for the

models' performance with complete exams. In the second part of the study, a sample

of eight chest CT scans was used to simulate the process of reading exams from a

worklist. However, to fully identify the strengths and weaknesses of the models, a

more significant number of exams must be analysed using this methodology. It

involves studying each case analysed by the models to determine situations where

AI is ineffective. Despite the limited number of exams in the second part, the results

were excellent and broadly consistent with the results of tests using only slices. One

limitation of the complete exam tests was the lack of NSIPP.

It is important to note that the pandemic is currently less severe than it was in

2020. This means that cases are less severe, with fewer symptoms and

complications compared to that time. To ensure accurate modelling, it is necessary to

update the database to reflect the changes in radiological profiles resulting from

successful immunization efforts.

After examining the results and images of the second test's eight cases, we

found that the model sometimes had difficulty distinguishing between resorption

patterns and lesions resembling fibrosis in specific slices. This issue arose when

analysing the slices of Patients 3, 7, and 8, particularly in areas without significant

architectural distortion where the densities of the lesions are similar. In addition,

ground-glass opacities, present in classical fibrosing interstitial diseases, can indicate

an early phase of fibrosis. The model mimics the challenges that radiologists face

daily, including the difficulty distinguishing between similar lesions. Even experienced

radiologists can make mistakes in these cases, and different radiologists may have

varying opinions. In the group of eight patients, it was noticed that the RP and PLSF

patterns did not occur together. This finding is essential for identifying the model's

accuracy in cases where these patterns must be distinguished.
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It is important to note that when CT scans show less severe patterns, such as

in Patients 5 and 8, it can be more challenging for the model to diagnose accurately.

Typically, models are developed using slices with clear patterns, but this is not always

the case in real life. Despite this, the model still had a high success rate of 80% for

these patients' scans.

One limitation of the model when analysing a complete exam is that it assigns

diagnoses slice by slice and does not produce a single diagnosis. By identifying all

patterns in all slices, there is no room for doubt about the diagnosis of the model.

However, although the accuracy was high, as occurred in Patients 2, 4, 5, and 7, it

was not 100%. There were some misdiagnoses in specific slices that contained the

smallest parts of the lesion. However, in cases with a second pattern present, it may

only appear in a few slices and not be deemed an error. Therefore, it is ideal for

future models to assign importance to the findings of each slice. When analysing

patterns, humans use a Cartesian approach but integrate all impressions to form a

unique impression of an exam. The next step in improving these models is to make

the analysis more similar to how a radiologist thinks.

Conclusions
Three different AI models have been successfully developed to read

post-COVID-19 patterns on CT scans, and their results have been considered

excellent from a diagnostic interpretation point of view. The CT findings were

consistent with those described in the literature. They represent a period in the

pandemic between July 2021 and May 2022, when immunization effects were

already present and affected the presentation of COVID-19. Although the complete

exam tests showed excellent results with a small sample, improvements are needed

to integrate all the information obtained into a single diagnosis.
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