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Artificial intelligence for cataract diagnosis and referral using real-world database

Inteligéncia artificial para diagnostico e encaminhamento de catarata usando dados reais

Inteligencia artificial para diagnodstico y remision de cataratas utilizando datos reales
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ABSTRACT

Descriptors: Artificial The use of artificial intelligence (AI) for ophthalmology applications has shown g promising results worldwide; howe-
Intelligence; cataract; ver, its performance is dependent on population groups and must be evaluated in real-world scenarios. We evaluated
diagnosis. the use of Al for cataract diagnosis and referral to specialists using a real-world database consisting of 2642 eye images

from a working telemedicine service in South Brazil. Our Al solution adopts an ensemble model to improve classifier
performance. The best results showed an accuracy of 90.6% for cataract diagnosis with a corresponding area under
the receiver operating characteristic curve (ROC AUC) of 96.7%. The accuracy for surgical referral was 86.5% with a
corresponding ROC AUC of 94.3%. The results indicate that the use of an ensemble of models and training with a
heterogeneous real-world clinical database enabled our solution to achieve superior performance compared to other
works in the literature when evaluated on real-world data.

RESUMO

Descritores: Inteligén- O uso de inteligéncia artificial (IA) para aplicacoes oftalmolégicas tém mostrado resultados promissores, entretanto,
cia Artificial; catarata; seu desempenho depende do grupo populacional amostrado e precisa ser avaliado em cenarios reais. Propomos o uso
diagnéstico. de IA para diagnéstico de catarata e encaminhamento para especialista usando uma base de dados real, composta por

2642 imagens oculares, de um servico de telemedicina no sul do Brasil. Nossa solu¢io adota um modelo composto para
aprimorar o desempenho dos classificadores. Os melhores resultados mostram acuracia de 90,6% para diagndstico, com
area correspondente sob a curva de operagio caracteristica do receptor (ROC AUC) de 96,7%. A acuricia para encami-
nhamento de catarata para cirurgia foi de 86,5%, com ROC AUC de 94,3%. Os dados obtidos apontam que o uso de
um modelo composto treinado com uma base clinica heterogénea real permitiu que nossa solugio atingisse desempenho
superior a outros trabalhos da literatura quando avaliados com dados do mundo real.

RESUMEN

Descriptores: Inteli- El uso de inteligencia artificial (IA) para aplicaciones oftalmolégicas ha mostrado resultados prometedores; sin embargo,
gencia Artificial; catara- el desempefio depende de los grupos de poblacién y debe evaluarse en escenarios reales. Evaluamos 1A para el diagnés-
ta; diagnostico. tico de cataratas y derivacion a especialistas utilizando una base de datos del mundo real, compuesta por 2642 imagenes

oculares, de un servicio de telemedicina del sur de Brasil. Nuestra solucion adopta un conjunto compuesto para mejorar
el rendimiento de los clasificadores. Los mejores resultados muestran una precision del 90,6 % para el diagndstico con
area bajo la curva caracteristica operativa del receptor (ROC AUC) del 96,7%. La precision de la derivacion de cataratas
fue del 86,5% con AUC ROC del 94,3%. Los resultados indican que el uso de un modelo compuesto entrenado con
una base heterogénea real permitié que la solucién lograse un rendimiento mayor que otros trabajos cuando fueron
evaluados con datos reales.
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INTRODUCTION

Cataract, the opacification of the lens of the eye, is
one of the main causes of vision impairment worldwide
and blindness in developing countries”. The number of
individuals affected grow with the increasing life expec-
tancy and the population aging. This process burdens the
already limited ophthalmic services and resources, main-
ly in developing countries @. Al-based applications in
ophthalmology promise to address growing healthcare
needs. Also Ting et al (2021) © presented a systematic
review of different Al-based software applications in
cataract patient management.. Lin, Liu and Wu (2021)
@ show an overview of Al applications for vatious di-
seases in the anterior segment of the eye, including the
detection and grading of cataracts. Additional literature
reviews of machine learning applications in ophthalmic
imaging modalities can be currently found ¢

Fundus eye images and Al techniques have been
applied to diagnose diseases such as diabetic retinopa-
thy, age-related macular degeneration, and glaucoma. A
combined detection of glaucoma, diabetic retinopathy,
and cataracts using fundus images is presented by Orfao
and Haar . However, there are still technical and legal
challenges to overcome for further Al adoption in oph-
thalmology ®. Among these challenges is the restricted
population in which the Al studies were conducted: small
datasets and a lack of diverse populations hinders gene-
ralization. Also, research studies often use data collected
in clinical trials or academic databases, which translates
into high-standardized imaging datasets. This also limits
external validity, data from real-world clinical settings of-
fers varying levels of quality and standardization, which
can be challenging for model development and testing .

The use of fundus photography for cataract assess-
ment, common in recent approaches, is unable to diag-
nose cortical cataracts. Furthermore, these images typi-
cally require extra efforts to distinguish poor-quality from
normal-quality images in real-world conditions ©. The
use of anterior images achieved good results for cataract
detection "?. However, when applied in real-wotld cases
there is a significant performance reduction, mainly due
to the presence of image artefacts, such as illumination
problems and noise 'V, Most literature studies on cata-
racts traditionally focus on cataract detection and grading
(21319 From the public health petspective, the main goal
in relation to cataracts is to diagnose the condition and
define if the patient will benefit from cataract surgery.

In this work, we evaluate the use of Al for cataract
diagnosis and referral to a specialized care. Cataract diag-
nosis is used to classify if the eye has a normal lens or not.
The amount of lens opacity that lead to a positive diagno-
sis is rather subjective and depends on ophthalmologists
to define if the cataract is clinically relevant to cause visual

problems. Referral is defined as a patient whose level of
lens opacity justifies a surgical evaluation. It should be no-
ted that visual acuity loss per se is not sufficient for refer-
ral, as other diseases could cause visual impairment. The
dataset was extracted from a working telemedicine servi-
ce in the southern region of Brazil. The research project
has been approved by the institutional review board from
Hospital de Clinicas in Porto Alegre (under the number
27764620400005327). Written consent was obtained from
all patients, parents or guardians.

The diagnosis and the decision for referral were made
by the ophthalmologist responsible for each patient. The
dataset labels were composed of mydriatic exams (when
the pupil of the eye is dilated) from a working database
containing patient evaluations reported by one of the
several ophthalmologists from the attending team. It re-
presents a real-world heterogeneous database (compo-
sed of patients with different ages and ethnicities) with
greater label noise than academic databases.

We adopted convolutional neural networks (CNN),
using pre-trained models to reduce training time and label
noise . Practical results indicated that no single model
solution reached adequate accuracy due to the inherent
database label noise. In this work, an ensemble of models
was used to minimize label noise effects and improve CNN
convergence. Additionally, we evaluated effect of extra data,
such as visual acuity and patient age, on the models. The
best results obtained were superior to other existing works
with real-world results and are comparable to approaches
using academic databases. Based on that, we consider this
proposed hybrid solution (which considers image and addi-
tional patient information), trained with real-world databa-
se, as a relevant and efficient contribution as practical tools
to public health use (i.e., defining the need for ophthalmo-
logic referral and surgical consultation). By using data from
a real-world telemedicine service, this study incorporates
diagnostic evaluations provided by ophthalmologists who
directly assessed the patients. This approach addresses a key
gap in the literature by moving beyond binary classifications
of “diseased” or “healthy” to identify clinically significant
cataracts that is those requiring referral for surgical treat-
ment. This paper is structured as follows: Section 2 provi-
des database details along with the Al techniques used. The
results are presented in Section 3, including evaluation of
models, image pre-processing effects, and results of expe-
riment that includes clinical features. Section 4 provides a
comparison to similar works, followed by conclusions.

MATERIALS AND METHODS

In this section, basic background information used in
this work is defined, including performance assessment
of binary classifiers. Additionally, the relevant Al me-
thods used are briefly discussed, followed by a descrip-
tion of our working database.
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Performance Measures for Binary Classifiers

In this section, we briefly define common perfor-
mance measures for binary classifiers used in this work.
The section assumes a generic binary classifier and the
unfamiliarized reader is referred to related works %17,

Considering a population of P positive cases and N
negative cases, a classifier will correctly label some of
the cases (true positives(TP) and true negatives(TN))
and others (false positives (FP) and false negatives (FN)).
The classifier accuracy (ACC) in (1) is the ratio of cot-
rect classifications to the total population. The specifici-
ty (SPE) (also true negative rate) in (2) is the ratio of cor-
rect classifications to negative cases. Sensitivity (SEN) in
(3) is the ratio of correct classifications to positive cases.
Finally precision (PRE) is the ratio of correct positive
classifications to all positive ones.

ACC = (TP +TN) / (P + N) 1)
SPE=TN /(FP+TN)=TN/N (2
SEN=TP/(TP+FN)=TP /P (3

PRE = TP / (TP + FP) )

3

A receiver operating characteristic (ROC) graph is a te-
chnique for visualizing and selecting binary classifiers based
on their disctimination threshold petformance "'¥. Since
Al models produce a probabilistic output to provide a bi-
naty output, this technique is used to compare classifiers.
The area under the ROC curve (ROC AUC) provides an
estimate of classifier’s performance using a single number.

Artificial Intelligence Methods

Two problems were addressed: identifying cataract
diagnosis and detecting referable cataracts. For diagnosis,
the Al attempts to classify whether an image has a cata-
ract or not. For referable cataracts, the Al classifies whe-
ther it is a candidate for surgical treatment or not (as this
is the criteria for referral). In the following subsections,
several topics regarding models, methods and database
development used in this work are explained.

Single models and ensembles

It is well known that CNN models can classify images
@), Since ophthalmologists use additional patient clinical
information such as age and visual acuity level to improve
accuracy of medical diagnosis, we hypothesized that an Al
model designed for diagnosis could increase performance by
processing such additional data. For this study, we utilized
an Al solution that combines a pre-trained CNN with an
additional multi-layer perceptron (MLP) model (Figure 1).

Figure 1. (a) Structure of the mixed-mode model used in this work and (b) example report from Keras for a mixed-model using
resnet50 CNN and associated MLP for tabular data, and (c) report from an MLLP-only model.
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The Al models were developed based on pre-trained
CNN models available in the Keras software library .
Different image resolutions and CNN models were used
for pupil-only (150x150) and complete images (400x400).

An MLP-only model was also used, in which the
input image was divided into 17 zones defined by a cit-
cular grid mask, and local statistics were evaluated, wi-
thout the need for a CNN model. The image statistics
are transformed to a tabular data format and fed into
the MLLP model along with other tabular data (Figure 1).
This approach is similar to that used by Gao et al. (2013)
@9 but utilizes AREDS mask 2.

input: | (None, 128)
output: | (None, 256)

dense_1: Dense

input: | (None, 256)
output: | (None, 256)

dropout_1: Dropout

input: | (None, 256)

dense_2: Dense
output: | (None, 1)

(©)

Multiple models were used in this work in order to im-
prove results 9. A diagram of the used ensemble model
in this work is presented in Figure 2. The probability ou-
tputs of the IN individual models in the ensemble are ad-
ded with equal weights (1/N). The combined probability
is then thresholded to the final classifier output A similar
approach was adopted by Chauhan et al (2018) *¥, where
distinct pre-trained models (VGG-19, ResNet101V2 and
InceptionV3) were combined for cataract diagnosis using
eye fundus images. In this work an exhaustive search was
performed in order to evaluate the model combination
providing better accuracy in the training data.

Figure 2. Diagram of used ensemble model.

prob 1
Model #1 >
Model #2

prob N
Model #N g -

Database development

In this section, details of the database used in this
work are presented. The database is a subset of a working
database from a telemedicine service in southern Brazil.
The “Teleoftalmo” initiative in South Brazil is briefly in-
troduced, describing the equipment and procedures used
in data acquisition. The process of image selection and
classification used in this work is also presented.

The Teleoftalmo initiative in South Brazil
Teleoftalmo @ is a telediagnostic service that ope-

prob 5 b classifier
1 prob output

rates in Rio Grande do Sul, the southernmost state of
Brazil. The main objective of this service is provide oph-
thalmologic diagnosis closer to individuals homes, redu-
cing displacement and waiting times. A central office is
located in the city of Porto Alegre. Patient data collection
and examination sites are distributed over different heal-
th districts in seven cities of the state. The Teleoftalmo
initiative has performed more than 30,000 telediagnoses
since 2017. The examinations include visual acuity mea-
surements, eye refraction, intraocular pressure measure-
ment, anterior segment and fundus photography, eyelid
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evaluation, ocular motility, and pupillary tests. Speciali-
zed ophthalmologic equipment is used for fundus and
anterior eye segment photography (Zeiss Visucam 224
Fundus Imaging) and for eye refraction measurements
(Zeiss Visuref 100 Autorefractor/Keratometer).

Databases developed

Data-oriented approaches require specific databases
to evaluate different problems. The problems addressed
include whether Al can operate using complete images
or if it needs pre-segmented images of the pupil. Addi-
tionally, we evaluated the impact of extra patient data to
perform cataract diagnosis and referral.

To evaluate if Al can identify automatically the re-
gion of interest in the images, two types of images were
used: complete eye and pupil-only images. To check the
performance for cataract diagnosis and referable cataract,
a database was developed for each problem. Finally, to
evaluate the performance when extra patient data is used,
tabular data and image data were used in the developed
databases. The databases were constructed using digital
photographs of eye antetior segment, patient demogta-
phic information (gender, race, age), data acquisition de-
tails (date, left or right eye, field angle), diagnostic infor-
mation, and the final medical report of every patient.

Image acquisition and pre-processing

The images used in this work are photographs of
the eyes’ anterior segment obtained using a profession-
al retinal camera. An image typically includes the pupil,
iris, part of the sclera, the eyelids, and eyelashes. Images
were captured using a strong light source (flash) focused
on the pupil and a field angle of 30°. Flash reflection is
always present in the images. Images were retrieved in
PNG format from the Teleoftalmo database with a res-
olution of at least 2448x2448 pixels. Figure 3a shows a
typical complete image. To evaluate the performance of
the Al with and without prior pupil segmentation, two
different image datasets were generated from the select-
ed images of the database: complete images and pupil
images (pupillary region only).

Figure 3. Example of the same patient photograph in two
formats: (a) complete image and (b) cropped pupil-only ima-
ge, as used in this work.

(b)

5

The complete images were rescaled to a resolution of
400x400. For the pupil images dataset, the original (uns-
caled) images were processed by a dedicated pupil area
detection algorithm designed in Matlab, considering seg-
menting pupil color and shape to allow automatic area
selection. The pupil area was cropped from the original
image, and a circular mask was used to exclude non-pu-
pil regions. The average resolution of the cropped pupil
images was 800x800. The pupil images were rescaled to
a resolution of 150x150. The pupil-only and complete
image sizes were chosen to keep the average pupil size
as close as possible in both sets. Figure 3b shows a seg-
mented pupil image obtained by cropping and masking
the complete image.

Image selection

Image selection for the cataract diagnosis database
was based on annotations in the Teleoftalmo working da-
tabase indicating the presence of cataracts in the selected
eye of each patient. Each image was then reviewed by
the authors to ensure minimum pupil dilation and image
quality (acceptable focus and flash intensity), while also
avoiding occlusions (partially closed eyes, eyelashes) or
the presence of artifacts caused by other eye pathologies.

In this work, the minimum accepted pupil diameter
was arbitrarily set to one-third of the external iris diame-
ter. Images of non-dilated pupils were discarded during
the creation of the database. The medical report was also
examined to confirm the cataract diagnosis and determi-
ne whether it was a referable cataract or not (indicating
whether the patient’s eye should be directed for surgical
treatment). Inconsistent cataract images and medical re-
ports may occur when other eye pathologies that require
urgent treatment, such as age-related macular degenera-
tion (AMD), are present. Such cases were not included
in the database. Eyes that had already undergone cataract
surgery and had artificial intraocular lenses were also ex-
cluded from the database.

The resulting selection of images contains three
types: eyes without cataracts, eyes with a positive diag-
nosis of cataracts but not eligible for correction surgery
(non-referable), and eyes with a positive diagnosis of
cataracts eligible for surgery (referable). Two different
databases were generated: one for cataract diagnosis
evaluation (images with and without cataracts) and one
for referable cataract evaluation (images with referable
cataracts and images with non-referable cataracts). In to-
tal, 2642 eyes from 1544 different patients were used in
the construction of the two databases, with only a single
image of each eye being used.

Additional patient data in tabular form

When examining a patient, an ophthalmologist routi-
nely uses information such as the patient’s age and visual
acuity when analyzing eye photographs. It is expected
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that incorporating additional data would enhance the
performance of an Al classifier. In this study, both ima-
ge-only classifiers and classifiers that utilized both images
and additional tabular patient data were employed. The
additional patient data included the patient’s age, gender,
self-declared race (skin color), visual acuity measurement
tests (including the best visual acuity measurement), and
measurements from the autorefractor eye exam.

Database statistics

A total of 2642 images were selected from the Tele-
oftalmo database. A single image of each eye was used,
and only images with a field angle of 30 degrees were
selected. Two different databases were generated: one for
cataract diagnosis and one for referable cataracts. Each
database contains two classes with the same number of
images in each class. The total number of images for ca-
taract diagnosis was 2160 (1080 normal eyes and 1080 ca-
taract eyes), and the total number of images for cataract
referral was 1824 (912 referable cataracts and 912 non-re-
ferable cataracts and normal eyes). Among images with a
positive diagnosis, 68% were from female patients, while
for surgical referral, 63% were from female patients.

RESULTS

In this section, the results obtained are presented
using accuracy and ROC AUC for model comparison.
In this work, we aimed at two target outputs, cataract
diagnosis and referral. For each target, complete images
and pupil-only images were used to evaluate the need for
previous segmentation of the images. We also studied
the effect of additional patient features such as visual
acuity and patient age on the models.

Test environment

Google Colaboratory @ was used as the development
platform for this work. The dataset was divided into six
folds, where five folds were used for training and valida-
tion, and the remaining fold was kept as a holdout test
set. After validation, the models were discarded, and a
final model was trained using all training/validation data.
The final model was then tested on the holdout test set.

During the development of this work, the versions
of Python, Keras, TensorFlow (TF), and Scikit-learn
were 3.7.10, 2.3.1, 1.15.2, and 0.22.2.post1, respectively.
TensorFlow 1.15.2 was selected as it was the only TF 1.x
version available on Google Colaboratory, and different
versions of TF 2.x were noticed in different virtual ma-
chines during initial tests.

Pre-trained CNN models available in Keras were used
in this study, including DenseNet201, DenseNet169,

DenseNet121, ResNetl152, ResNet101, ResNet50,
VGG16, VGG19, MobileNet, InceptionResNetV2,
Xception, and InceptionV3. A standard transfer learning
approach of the CNN ImageNet models provided in Ke-
ras was used ”. An MLP-only model was also used as
described eatlier in Section 2. For cases where extra data
was provided, an MLP network was used in parallel with
the pre-trained CNNs. The models were fine-tuned for
up to 100 epochs. The average accuracy during validation
was used to select the best model for each scenario.
During single model validation and testing, all indi-
vidual model responses and probabilities were recorded.
During the model ensemble evaluation, results from
each individual model were loaded. Since 13 different
models were available, the total number of model com-
binations is 2°13=8192. To ease this evaluation, all indi-
vidual model responses and probabilities were recorded
in a file when the single model validation and testing was
performed. This way, model ensemble evaluation search
used previously evaluated results from each individual
model. As presented in Figure 2, the single model proba-
bilities were added together and divided by the number
of models in the ensemble to generate a new ensemb-
le probability. The new ensemble probability was then
thresholded to generate a binary classification. The ave-
rage accuracy during validation was used to select the
best ensemble model combination for each scenatio.

Overall results

Since this was as exploratory work, several models
were evaluated and compared as described in Table 1.
For example, using a single model is described as “model
type: single”. Two columns are used to indicate the use
of tabular data in addition to image data (“image only”
and “image + extra data”).

Table 1 presents accuracy and ROC AUC results for
single and ensembles models. To evaluate the results, a
specific scenario must be selected: the model type (sin-
gle or ensemble), the database (diagnosis or referral), the
image type (pupil or complete image), and the use of ex-
tra data (“image_only” or “image+extra data”). For each
scenario, the number of models, accuracy, and ROC
AUC are provided. All data was evaluated on the hol-
dout test set. Observing Table 1, it is evident that the use
of extra data enhances accuracy and ROC AUC results
in all scenarios compared to the image-only case, with
an average improvement of 7.7% for accuracy and 5.4%
for ROC AUC. Ensembles outperformed single models
in the same scenatios. Additionally, ensembles reduced
the performance gap between complete image and pu-
pil-only images, with an average difference of 0.8% for
accuracy and 0.2% for ROC AUC.
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Table 1. Number of models, Accuracy and ROC AUC of the final models evaluated in the test set (holdout set)

Number of models Accuracy (ACC) ROC AUC
Image | Image + |Image |Image + |Image | Image +
Model type | Database Image only | extra data only extra data only extra data
complete eye 1 1 0.740 0.836 0.831 0.914
referral
pupil 1 1 0.760 0.852 0.823 0.914
Single
complete eye 1 1 0.836 0.886 0.920 0.950
diagnosis
pupil 1 1 0.867 0.906 0.945 0.954
complete eye 6 6 0.789 0.865 0.883 0.943
referral
pupil 7 3 0.799 0.852 0.885 0.944
Ensemble
complete eye 5 7 0.872 0.906 0.950 0.967
diagnosis
pupil 7 5 0.867 0.919 0.947 0.973

Cataract referral and diagnosis results
Figure 4 presents ROC curves for cataract referral.
The plotted curves correspond to the eight scenarios for

each classifier (complete or pupil-only image, use of ex-
tra data, single or ensemble model) and a random guess
classifier for reference.

Figure 4. ROC curves for cataract referral.
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The higher ROC_AUC values presented indicate the
curves closer to the ideal binary classifier (true positive
rate = 1 and false positive rate = 0). The plots obtained
using extra data and ensemble models (pup_ext_ensem-
ble and eye_ext_ensemble) have the highest ROC_AUC
(0.94) and the best performance.

Figure 5 presents ROC curves for cataract diagno-
sis. The plotted curves correspond to the eight scenarios
for each classifier and a random guess classifier for refe-
rence. The plots obtained using extra data and ensemble
models (pup_ext_ensemble and eye_ext_ensemble) have
the highest ROC_AUC (0.97).
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Figure 5. ROC curves for cataract diagnosis.
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Table 2 presents the best cataract referral results ROC_AUC, sensitivity, and specificity results. The
obtained using an ensemble of models, while Tab- extra data, in column 1 of both tables, represent ta-
le 3 presents the best cataract diagnosis results. The bular data in addition to image data such as visual
results indicate that extra data improves accuracy, acuity and patient age.

Table 2. Best ensemble model results for cataract referral and the use of extra tabular data from the patient (extra data)

Use of extra data | Accuracy | ROC_AUC | Sensitivity | Specificity Models composing the ensemble
(ACC) (SEN) (SPE)
no 0.789 0.883 0.717 0.862 DenseNet121, ResNet101, InceptionResNetV2,
Xception, InceptionV3, MLP_256_RN_128_RN_A
yes 0.865 0.943 0.842 0.888 DenseNet121-256_RN_128_RN_A, ResNet101-256_

RN_128_RN_A, MobileNet-256_RN_128_RN_A,
InceptionResNetV2-256_RN_128_RN_A,
InceptionV3-256_RN_128_RN_A MLP_256_
RN_128_RN_A

Table 3. Best ensemble model results for cataract diagnosis and the use of extra tabular data from the patient (extra data)

Use of extra | Accuracy ROC_AUC | Sensitivity Specificity Models composing the ensemble
data (ACC) (SEN) (SPE)
no 0.872 0.950 0.833 0.911 DenseNet201, DenseNet121, ResNet50, MobileNet,
MLP_256_RN_128_RN_A
yes 0.906 0.967 0.883 0.928 DenseNet201-256_RN_128_RN_A,

DenseNet121-256_RN_128_RN_A, MobileNet-256_
RN_128_RN_A, InceptionResNetV2-256_
RN_128_RN_A, Xception-256_RN_128_RN_A,
InceptionV3-256_RN_128_RN_A, MLP_256_

RN_128_RN_A
DISCUSSION for previous pupil segmentation. Although more infor-
mation is present in the complete images, the use of an
In this work, complete images of the anterior part of ensemble of models allows their use without the need
the eye and pupil-only images were used to determine if of segmentation. This way, the requirement for costly
the Al classifier would be able to work without the need pre-segmentation of the region of interest (pupil) in the

images may be disregarded.
https://jhi.sbis.org.br/
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The results of models using complete images were se-
lected for cataract referral and diagnosis. The combined
use of extra patient data and model ensembles provided
the best performance metrics. A cataract diagnosis accu-
racy of 90.6% and ROC_AUC of 96.7% were achieved
in this work considering complete images, model ensem-
bles, and the use of extra patient data. A cataract refer-
ral accuracy of 86.5% and ROC_AUC of 94.3% were
achieved for the same conditions. Therefore, the cataract
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referral classification system had lower performance than
the cataract diagnosis system, as indicated by the best ac-
curacy for each task.

It is interesting to notice that when additional patient
data is not included, the performance decreases. A cataract
diagnosis accuracy of 87.2% and ROC_AUC of 95.0% were
achieved considering complete image images and model en-
sembles. A cataract referral accuracy of 78.9% and ROC_
AUC of 88.3% were achieved for the same conditions.

Table 4. Comparison of related cataract diagnosis and referral approaches.

Database type Cataract Diagnosis Cataract Referral
Reference Training/Testing ACC ROCAUC ACC | ROC_AUC Image Type
%) %) %) %)

(10) academic/academic 98.68 99.93 88.00 | 94.88 anterior segment, mydriatic, diffuse
THIS WORK real-world/real-world 90.60 96.70 86.50 | 94.30 anterior segment,

(image and extra data) mydriatic, flash

(10) academic/real-world a | 88.79 95.96 79.50 | 91.51 anterior segment,

non-mydriatic, diffuse

THIS WORK real-world/real-world 87.20 95.00 78.90 | 88.30 anterior segment,

(image only) mydriatic, flash

(25) real-world/real-wotld 90.8 (frames) mydriatic , non-mydriatic, slip-lamp

85.7(videos)

) academic/academic 84.3 91.62 fundus

(1] academic/academic 93.9 fundus

(13) academic/academic 97.0 fundus

(14 academic/academic 94.80 fundus

(18) academic/academic 95.0 fundus

(23] academic/academic 98.0 anterior segment

(24) academic/academic 96.3 fundus

ROC_AUC=area under the ROC curve;

A selection of related works is presented in Table 4.
Several works are based on fundus images for cataract de-
tection @ 131422429 Although high accuracy in cataract
diagnosis is achieved, cataract referral is not addressed.
Wu et al. (2019) "9, like our solution, presents results for
cataract detection and referral, being tested in academic
and real-world scenatios. The obtained results showed a
significant reduction in performance when a deep learning
approach, only trained with academic databases, is applied
to real-world cases. The main reason for that performance
difference is the incidence of distinct noise interferences
in real-world images, like problems with inadequate focus,
reflections, flash and bad illumination artefacts and others.

It should be noted, however that Wu et al. (2019) 9 uses
non-mydriatic images and our work is based on mydriatic
images. Therefore, we alternately compare our results wi-
thShimizu et al (2023) ® which is, to the authors’ knowle-
dge, the only published Al work with real-world results of
cataract detection, using mydriatic eye images. Shimizu et
al (2023) ® evaluates a novel solution of machine learning
(ML) to diagnose cataracts comparing results when the
ML algorithm is trained using isolated images (frames) or
recorded videos, using real data collected from a Japanese
ophthalmology institution (Yokohama Keiai Eye Clinic).
Table 5 presents a comparison of real-world results inclu-
ding sensitivity and specificity.

https://jhi.sbis.org.br/
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Table 5. Summary statistics comparison for real-world data
Cataract diagnosis Cataract referral
Reference ACC ROC_AUC SEN | SPE ACC ROC_ SEN | SPE
%) %) || w | Avc | @ |
%)
THIS WORK 87.2 95.0 83.3 |911 |789 88.3 71.7 | 86.2
(image only)
(25) a 90.8
(25 b 85.7
(10) ¢ 88.79 95.96 92.00 | 83.85 | 79.50 91.51 73.0 |86.0
THIS WORK 90.6 96.7 88.3 |92.8 |86.5 94.3 84.2 |88.8
(image and extra data)

ROC_AUC=area under ROC cutrve;

a real-world experiment using isolated mydriatic images (frames)

b real-world experiment using sequence of mydriatic images (videos)

¢ real-world test in Al ambulatory experiment using non-mydriatic images

To compare our results with those of Shimizu et al
(2023) @ we only considered cataract detection results obtai-
ned using mydriatic images (the whole work of Shimizu et al
(2023) @ presents results for cataract detection and grading
using mydriatic and non-mydriatic images). Considering
that, we can clearly note that our solution was able to reach
supetior performance (ROC_AUC) in both scenarios (when
Shimizu et al (2023) ® use isolated images or videos).

Furthermore, when comparing our solution with that
of Wu et al. (2019) 9 we can observe that our first ver-
sion (which uses only images to performs cataract diag-
nosis) obtained inferior results. However, when image
and additional patient data are incorporated, we achieved
accuracy, ROC_AUC and specificity in both purposes
(diagnosis and referral).

It important to cite that the use of an ensemble of
models will have a high computational cost. The use of
single models and additional data was shown in Table
1 to provide similar results to ensembles and additional
data and would be a viable option for the implementation
in a practical scenario, that have a limited computational
infrastructure. The use of pupil images would require
additional computational cost to isolate the pupil, so a
solution that uses the complete eye may be preferred.

CONCLUSION

In this work, an Al approach to cataract diagnosis
and referral was performed using a real-world data. By
utilizing a real-world database, we inherently assume that
there will be noise in the dataset labels. To address the
label noise issue, fine-tuned pre-trained ImageNet CNN
models were used. To improve the individual models
performance, our work adopted an ensemble of models.
The use of additional patient data, such as visual acuity
and age, combined with eye image, considerably impro-
ved the results, particularly for cataract referral. These re-
sults can inform future decision-making when designing

eye care strategies augmented by Al. Other works trained
on academic databases present high accuracy, but their
performance significantly decreases when applied in real-
-world scenarios!”. Furthermore, our results are supetior
to those obtained by recent Al solutions, which use my-
driatic and non-mydriatic images, when considering their
application in a real-world setting;

Regarding potential applications, outr system can
have clinical and public health utilities. Clinically, the sys-
tem could enable automated screenings in both primary
care settings and through remote consultations. By assis-
ting physicians and healthcare professionals with clinical
decision support and patient prioritization based on the
need for surgical consultation, our system can contribute
to healthcare efficiency. Ensuring timely intervention of
cataracts can help prevent vision impairment or blind-
ness associated with advanced cataracts. Public health
initiatives could leverage Al for large-scale screening
programs and epidemiological studies, contributing sig-
nificantly to the reduction of healthcare costs through
efficient resource utilization.
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