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RESUMO

Introducao: A classificacao automatizada de leucécitos por visdo computacional é uma alternativa promissora a analise
manual, que é demorada e subjetiva. Objetivo: Esta revisao sistemadtica visa analisar e sintetizar as evidéncias sobre os
algoritmos de aprendizado de maquina aplicados a classificagdao de leucdcitos em imagens de esfregaco sanguineo, ava-
liando seu desempenho e desafios. Métodos: Foi realizada uma revisio sistematica (PRISMA) nas bases MEDLINE/
PubMed, Embase e Scopus, para estudos publicados entre 2020 e 2025. Resultados: A partir de 300 registros iniciais, 28
estudos foram incluidos. Os resultados indicam um predominio de modelos de aprendizado profundo (CNNs, YOLO)
com acuracia frequentemente superior a 95% na classificagao de leucécitos maduros. Conclusio: Embora tecnicamente
madura para células normais, a area enfrenta desafios como a heterogeneidade metodolégica entre os estudos e uma
lacuna na classificacao de células imaturas e atipicas, que possui maior relevancia clinica.

ABSTRACT

Introduction: Automated leukocyte classification using computer vision is a promising alternative to manual analysis,
which is time-consuming and subjective. Objective: This systematic review aims to analyze and synthesize evidence on
machine learning algorithms applied to leukocyte classification in peripheral blood smear images, evaluating their per-
formance and challenges. Methods: A systematic review (PRISMA) was conducted in MEDLINE/PubMed, Embase,
and Scopus for studies published between 2020 and 2025. Results: Out of 300 initial records, 28 studies were included.
The findings indicate a predominance of deep learning models (CNNs, YOLO) with accuracies often exceeding 95% in
the classification of mature leukocytes. Conclusion: Although technically mature for normal cell classification, the field
faces challenges such as methodological heterogeneity across studies and a gap in the classification of immature and
atypical cells, which have greater clinical relevance.

RESUMEN

Introduccién: La clasificacién automatizada de leucocitos mediante visiéon por computadora es una alternativa pro-
metedora al analisis manual, que resulta laborioso y subjetivo. Objetivo: Esta revision sistematica tiene como objetivo
analizar y sintetizar la evidencia sobre los algoritmos de aprendizaje automatico aplicados a la clasificacién de leucocitos
en imagenes de frotis de sangre periférica, evaluando su desempefio y los desafios asociados. Métodos: Se realizé una
revision sistematica (PRISMA) en las bases de datos MEDLINE /PubMed, Embase y Scopus para estudios publicados
entre 2020 y 2025. Resultados: De 300 registros iniciales, se incluyeron 28 estudios. Los resultados indican un predo-
minio de modelos de aprendizaje profundo (CNN, YOLO), con precisiones que superan frecuentemente el 95% en la
clasificacion de leucocitos maduros. Conclusion: Aunque técnicamente madura para la clasificacion de células normales,
el area enfrenta desafios como la heterogeneidad metodolégica entre los estudios y una brecha en la clasificacion de
células inmaduras y atipicas, que poseen mayor relevancia clinica.
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INTRODUCAO

As células brancas do sangue (leucdcitos) sao com-
ponentes vitais do sistema imune, e sua classificacdo em
subtipos ¢ fundamental para o diagnéstico de diversas
condi¢bes, como infecches, inflamagdes e neoplasias
hematolégicas. A contagem diferencial de leucdcitos €,
portanto, um dos pilares da analise hematoldgica clini-
ca(l).

Tradicionalmente, a analise de esfregagos de sangue
periférico ¢é realizada manualmente ao microscépio. No
entanto, este método é laborioso, demorado e susceti-
vel a variabilidade do observador, o que representa um
desafio significativo para a eficiéncia e padronizacio do
diagnostico em laboratérios com alta demanda(2).

Para superar essas limitagoes, técnicas de aprendi-
zado profundo (deep learning) tém sido aplicadas com
resultados promissores na classificagdo automatizada de
leucdcitos. Apesar do sucesso, a area ainda enfrenta de-
safios importantes, incluindo a variabilidade morfoldgica
das células, a falta de padronizagdo nos métodos de aqui-
sicdo de imagem e a escassez de grandes conjuntos de
dados rotulados(1).

Diante da crescente producio cientifica, uma andlise
sistematica da literatura torna-se essencial para conso-
lidar o conhecimento atual. Portanto, o objetivo desta
revisdo é investigar e analisar criticamente os algoritmos
de visdo computacional aplicados a classificacdo de leu-
cécitos, identificando as principais arquiteturas, avalian-
do seu desempenho diagnostico e discutindo os desafios
e oportunidades para futuras pesquisas.

METODOS

Esta revisao sistematica foi conduzida de acordo
com as diretrizes PRISMA 2020(31) e seu protocolo
foi previamente registrado nas plataformas PROSPE-
RO (CRD420251060493) e Open Science Framework
(DOI: 10.17605/OSEIO/ND8WS5). A pesquisa buscou
responder a seguinte pergunta, estruturada pela meto-
dologia PCC: “Como os modelos de aprendizado de
maquina e visio computacional tém sido aplicados na
classificacio automatica de leucéeitos em amostras de
sangue periférico?”.

Estratégia de busca

A busca foi realizada em junho de 2025 nas seguintes
bases de dados eletronicas: MEDLINE (via PubMed),
Embase e Scopus. A estratégia de busca foi desenvol-
vida utilizando descritores controlados (MeSH e DeCS)
e termos livres, combinados com operadores booleanos
“AND” e “OR”. Embora os artigos pudessem ser em
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inglés, portugués ou espanhol, os termos de busca foram
mantidos em inglés para maximizar a sensibilidade da
busca nas bases de dados internacionais. Foram exclui-
dos artigos de revisao, estudos ndo humanos ou de me-
dula 6ssea, e publica¢oes sem dados originais. O Quadro
1 detalha as estratégias utilizadas.

Quadro 1 - Estratégia de busca.

Base de dados | Estratégia de busca

PubMed/ ((“Artificial Intelligence”[MeSH Ter-
MEDLINE ms] OR “Machine Learning”[MeSH
Terms] OR “Deep Learning”[MeSH
Terms] OR “neural networks, com-
puter”’[MeSH Terms] OR “Artificial
Intelligence”[All Fields] OR “Machi-
ne Learning”[All Fields] OR “Deep
Learning”[All  Fields] OR “neural
networks”[All Fields]) AND (“ima-
ge interpretation, computer assis-
ted”’[MeSH Terms| OR “computer
vision”[All Fields] OR “image analy-
sis”[All Fields] OR “image proces-
sing”[All Fields]) AND  (“leukocy-
tes”[MeSH Terms|] OR “white blood
cells”[All Fields] OR (“leukocyte
count”’[MeSH Terms] OR (“leuko-
cyte”’[All Fields] AND “count”[All
Fields]) OR “leukocyte count”[All
Fields] OR “wbc”[All Fields]) OR
“leukocyte classification”|All Fields])
AND “blood”[MeSH Terms]) AND
(y_5|Filter])

Embase (‘Artificial Intelligence’/exp OR ‘Ma-
(Elsevier) chine Leatning’/exp OR ‘Deep Le-
arning’/exp OR ‘Neural Networks,
Computet’/exp OR ‘artificial intelli-
gence’” OR ‘machine learning” OR
‘deep learning” OR ‘neural networks’)
AND (‘Image Interpretation, Com-
putet-Assisted’/exp OR  ‘computer
vision” OR ‘image analysis’ OR ‘ima-
ge processing’) AND (Leukocytes/
exp OR ‘white blood cells” OR WBC
OR ‘leukocyte classification’) AND
(‘Petipheral Blood’/exp OR ‘blood
smear” OR ‘peripheral blood”) AND
(‘automated classification” OR ‘auto-
matic detection” OR ‘cell classifica-
tion’)
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Scopus (“Artificial Intelligence” OR “Machi-
Elsevier ne Learning” OR “Deep Learning”
OR “Neural Networks, Computer”
OR “artificial intelligence” OR “ma-
chine learning” OR “deep learning”
OR “neural networks”) AND (“Ima-
ge Interpretation, Computer-As-
sisted” OR “computer vision” OR
“image analysis” OR “image proces-
sing”) AND (Leukocytes OR ““white
blood cells” OR WBC OR “leukocy-
te classification”) AND (“Peripheral
Blood” OR “blood smear” OR “pe-
ripheral blood”) AND (“automated
classification” OR “automatic detec-
tion” OR “cell classification”)

PubMed/MEDLINE = United States National Li-
brary of Medicine/Medical Literature Analysis and Re-
trieval System Online

Fonte: Elaborado pelos Autores (2025).

O processo de selecio dos estudos foi realizado por
dois revisores independentes, com um terceiro para
resolver divergéncias, e esta detalhado no fluxograma
PRISMA (Figura 1). A extracao de dados focou nas ca-
ractetisticas dos estudos, algoritmos, conjuntos de dados
e métricas de desempenho. A qualidade metodolégica
e o risco de viés foram avaliados com as ferramentas

QUADAS-2, ¢ a certeza da evidéncia foi classificada uti-
lizando a abordagem GRADE.

RESULTADOS

A busca inicial nas bases de dados identificou 300
registros. Apos a remogao de 70 duplicatas, 230 artigos
foram triados por titulo e resumo, resultando na selecao
de 49 estudos para a analise do texto completo. Nesta
etapa de elegibilidade, 21 artigos foram excluidos por
nao atenderem aos critérios de inclusdo. Os principais
motivos para exclusdo foram a nio abordagem da clas-
sificacio leucocitaria (n=5), o uso de material biologico
inadequado (n=4) e baixo rigor metodolégico (n=4). O
processo detalhado de selegao esta apresentado no flu-
xograma PRISMA (Figura 1).

Figura 1 - Fluxograma PRISMA do processo de bus-
ca e sele¢do dos estudos.

Estudos identificados por meio da pesquisa nas
bases de dados (n=300). PubMed/MEDLINE
(n=163); Embase (Elsevier) (n=8T); ¢ Scopus
(Elsevier) (n=50),

l

( Estudos excluidos por duplicidade (n=70) )

[ Registros triados por titulo € resumo (n = 230) )

!

[ Registros excluidos na triagem (n = 181) )

'S =
Artigos avaliados para clegibilidade em texto
completo (n = 4%)

p

v,
( . A
Artigos excluidos na leitura completa (n = 21), pelos
seguintes motivos: Nio aborda classificacio de
leucacitos (n = 5), Utiliza outro material bioldgico
(n = 4), Baixo rigor metodoldgico (n = 4), Foco
apenas em contagem/deteccio (n = 3), Artigo de
desericio de dataset (n = 2), Sem acesso ao texto
iﬁmp]r:m (n = 2) ¢ Revisio de escopo (n =1}

!

-~

Estudos incluidos na sintese qualitativa (n = 28) ]
A

Fonte: Elaborado pelos Autores (2025).

Quadro 2 - Caractetizacao dos estudos incluidos na
revisao sistematica.
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Autoria | Perlomco Conjunto de Dados Algoritmo{s) Resultados

Fhaa O, et al {3022 - Jouma! | 8915 sub-imagers de Bagmertasha: Thresholding A rdeis mecha 98 1% F1 98 47%
of felcad snd Biovogical asherpiors de sangue Classificacha: Desply

Enginsering {prapna) Agaregated G

Bantboun M, et al. [2022) LISC e WECis Sagmertacha: Grarm-Schimict Sagmentagha: 86,4957 35
Compufationa and Classificacha: SIFT # ChiM + Classificacha: 97, 14%
Lathemalica! Methods in WIFTS5R

LEgicng

Hoissein EHL &t al. [2023) BCCD |GitHul) Bagmertacia BO-FRE e Hybid | Acrdkeis 98,85%

Frontiers in Cncoiofy

Bl Fitting
Classihicacha: Derefdet-181 4
CLR

Zhu Z, Wang 3H, Zhang YD,
(2023 - Tachnoiogy i Cancer
Research & Treaiment

Faggle, 3 tipos de oduls

Estracho: ResNetS0
Classificacha: Ensamble de 3
reckes (SR, ELM, dRVFL)
FeRtet

Aeurdeis mecka 99 97%; F190997%

Halenur Sazak & Mubommed
Katan (2025) - Diagnosics

BCCD

SOLCRA0 ! YOO

P geral 93,6%; acurdca WBC
99,05, plaoueias 91 6%

Wang X, et al. (2025)
Srlermiific Reports

BCCD, LDWEC, USC,
Fsasbin

Deteccdo: YOLOWT aprimonado
Classificacha: Efcerels2
Apri oo

Deteccio BCCD: 94, 7%
Classificacha: pradsio 95 1250, recall
a7

Ealnaor &, Madnalli V. [2025) -
SHEMNE Reparts

ALLADS, Cal
Ibomhckogical Datasat,
WBC-3K

Segmertacia: DEO + Levy fight
Classificacho: ADCLHNet

Acurdcia 98 4%; Dice 094

Jung C, et al (2023 - B4C Dabaset privado ¢ LISC Classifizacha: W-ial I rdein 975 (privada), 96% [LISC)
Redhzsl Imsging Geraclo de imagens: DCGEAN
Cheen X, el al, (2022) - Jovmal | PEC e BRZISCK Aunio-sperisioreds com Chik PBC: BB A0 BCISCIK: 71,62%
af Efashoionics
Farg T, et al. {2023) Celavision, BOCD, ALL- =+ Segmentagio: F-meaans, - Reske18: 1005 Calalisian, 08 49%
Cytomely DR2, PRC-HCE. Met, U-PletsRashia PBC-HCE
* Chrssificacdo: Mo,
WEE16, Feshlet 18,
Ehan S, et al (3024) PEC, UEC, RasbinWBC, | ChW Mobilahlety2 + Rade da Mevrdein 00 B0 (PRC), 99 35% (LISC),
Asencio Dupla (OA) & DOGAN | 99,60% (Raskin\WBC)

Computers in Boicgy and
Liedichng

Tawakoli 5, = al. (2021)
Scientific Reports

Rashin-\WBC, LISC,
SCCO.

Extracio de cor e forma + SV

Mycrdein 92,2184, 65%

Mnand W, &t al. (2024)
Hdedkcal Imaging

Blic

Faggle, 12444 imagens {d
[= FoT2

Segmertacha processamentn
e rmageEm
Classifizacha: TN propria

Aerdein 97,9655 precisda 97,97%

Crean 3N, Uyar T, Karayegan
G (3024} - Cyfomealry

Dt msto {CallaVison,
Faabin\WEC, Kaggke)

TR proyenias & Ut & Beghlet

B rdeis balanceada: 97, 27-98 05%

Arnelefe DS, et 4l {2023)
Infemational Jourmal af
Laborsiony Hemataiagy

© MMC 2018, AL ICE

Classificacha: EficernNelDd
(ALLDt)
Segmertacha: Chan-\ess

Mycirdein geral 97, 13% (LLA)

Fhang C, &t al. (2020)

Dialaset privado (Hospital

Rede hibrida advendiris-

Aeurscis mecka 95 53 &1 14%

Hjedhcs! Bhysics Iliarvang, China) e mi rastive [ HADRM) by

am Riesflat
Reera MR & Ameer Pl LisC Bagmertacia: DeaplLabeGs AP 88, 42% {segmeriacio); aouricia
{2021} ~ Computers in Bieiogy Classificagha: Mot + 98,67 £1%
and Meaiaine rarsferéncia
Patl A, =t al. (2021) - \RER | BCCD CHR + RN [LETH) + CCA Mcrdcin Xoaption-LSTH: 95 89%
Girdhar A, et al. (2023 BCCD CMR prdyprias Aciirdeia 98,66%:; F1 97, 11%
Blomedical Sgnal Processing
and Confro!
Hossar M, ot al. (2022 BCCD R atimnizads por GW0-EA A 97-00%, seribiicksde Sd%;
Expan Systems \wih precisio 56%
Applcations
Bayat M, et al (2022) - 68 PEC (Kagghe) Ch (Efficianthlst) + atercio Aeurscia 99 B robuster mantida
DCeia and! Cogrithve Compuiing s oo reducho de dadas (<1%)

Cheugue el al, (2023)
Diagnostios

BCO, CRC, WBC, KB,
LISC

Detecgior Faster R-CRN
Classificacha: CHN Mabiefat
paralelas

Ibtricas e performreancs ~08 4%

Abrrad R et Al (2035)

Drastaset privado [Hospital

Densete 201 Daknel5l «

Aerdcin 90 5%

DASGnOsics ilitar Comiirmada, ECKP#, # Fine BMN
Paguistha)

Pbhssrmad Abou NI, et 3l BCCD, PRC Comparatisg: TN propria, Ibalor resulado WiT: 97, 1%
{2023} - Apanhms WEE1E, WiT
khan 3, et al (32024) RaabindWBE, PEC, LSS Sagmertagia YOLOwEmesyg Aecardeias A8 40090 535%
Computers in Bioiogy and Classificacsha: Mobilehetu'3
echchne
Shaik A, et al, (2024) BCCD YOLOWS cusiomizacdo Precisda 92,200 F1 995 sermibibcds
Infermanicnal Joumal of 98,5%
Imaging Systems ang
Tecrmagy
M-gucsh B & Suen O (2021) | ALLIDB Fipsdine 1: Reshets] & Pliaquietas 08 B%: heuaicilas 955

Computers i Biodogy and' processamrera de iregem cornbinada 98 7%, superando referdncia
edichne Pipsline 2: WEE18WGE16 para

WECE & plapuetas

Alrmectgad & Sere (20200 LISC WEE-18, Rashiet, Dansehlat Densefat-163 acurdoas 98 8%

o G
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Fonte: Elaborado pelos Autores (2025).

A qualidade metodoldgica e o risco de viés dos 28
estudos foram avaliados com a ferramenta QUADAS-2.
Os resultados consolidados sio apresentados visual-
mente nos graficos de risco de viés (Figura 2). A andlise
demonstrou um baixo risco de viés na maioria dos do-
minios, especialmente no Teste Indice (D2) e no Fluxo
e Tempo (D4), indicando que os algoritmos foram, em
geral, bem descritos e aplicados de forma robusta. O
principal ponto de preocupagio foi identificado no Do-
minio 3 (Padrio de Referéncia), onde uma parcela dos
estudos foi classificada como de alto risco por utilizar
dados sintéticos como padrio-ouro para validagao, o que
limita a aplicabilidade clinica dos seus achados.

Figura 2 - Grafico de Risco de Viés.

Risco geral de viés
Fluxo e tempo
Padrao de referéncia
Teste indice

Selegao dos pacientes

o 20 0 60 80 100
percentual

=3 Baixo risco de viés = Altorisco de viés B Sem informacao

Fonte: Elaborado pelos Autores (2025).

A sintese da evidéncia foi realizada utilizando a me-
todologia GRADE, e os resultados estio detalhados na
Tabela de Resumo dos Achados (Tabela 1). A analise
consolidada revela que, apesar das altas acurdcias repor-
tadas individualmente, a certeza geral na evidéncia é clas-
sificada como “Muito Baixa”.

Tabela 1 - Resumo dos achados segundo a aborda-
gem GRADE

Destecho Acutiacia na Classificacio
de Leucdocitos

N°de Estudos 28 estudos

Resumo dos Efeitos (N° de imagens por

(Acuricia Reportada) | estudo vatia de ~242 a
>12.000)

Qualidade/Certeza da | A maiotia dos estudos
Evidéncia (GRADE) reporta acurdacias muito
altas, geralmente na faixa
de 95% a 99% para a
classificacao de 4 a 5 sub-

tipos de leucocitos .

Desfecho Acurdcia na Classificacio

de Leucdcitos

MUITO BAIXA

A certeza da evidéncia foi
cagdo rebaixada devido a sérias
limitacées em muiltiplos

Comentarios e Justifi-
cativa para a Classifi-

dominios:
Risco de Viés, Inconsis-
téncia, Evidéncia Indireta

e Imprecisio.
Fonte: Elaborado pelos Autores (2025).

A classificagdo de “Muito Baixa” certeza foi deter-
minada por fragilidades metodoldgicas e de relato signi-
ficativas presentes no corpo da literatura. As principais
razdes para o rebaixamento da evidéncia incluiram o ris-
co de viés pelo uso de dados sintéticos como padrio de
referéncia, a extrema variedade de modelos e protocolos
experimentais (inconsisténcia), a aplicabilidade clinica li-
mitada de alguns estudos (evidéncia indireta) e, de forma
critica, a falha quase unanime em reportar intervalos de
confianca para as métricas de desempenho (imprecisio).

DISCUSSAO

Esta revisio sistematica de 28 artigos demonstra a
notavel evolucdo e diversidade das abordagens de inte-
ligéncia artificial para a classificacdo leucocitaria. Uma
observacio central é o predominio de modelos de apren-
dizado profundo que vao desde arquiteturas classicas
de Redes Neurais Convolucionais (CNN) até sistemas
de deteccdo em tempo real e modelos hibridos comple-
x0s, consistentemente atingem alto desempenho, com
a maioria dos estudos relatando acuricias superiores a
95%, evidenciando a maturidade da area para aplicacOes
de auxilio diagnéstico. Até o momento, nao foram identi-
ficadas na literatura outras revisGes sistemadticas que con-
solidassem essas abordagens, o que reforca a originalida-
de e a principal contribuicio deste trabalho: a sintese e a
analise critica das metodologias, algoritmos e resultados
que definem o estado da arte no campo.

Os primeiros trabalhos no campo frequentemen-
te utilizaram modelos seminais como a AlexNet ¢ a
VGG16 como base. Essas redes, embora mais simples
que as atuais, foram cruciais para estabelecer a viabilida-
de das CNNs na extracdo de caracteristicas morfoldgicas
de imagens de células sanguineas(6-7).

Posteriormente, observou-se a consolidacido de arqui-
teturas mais profundas e robustas como ResNet e Den-
seNet. Esses modelos tornaram-se um padrao na érea,
sendo amplamente utilizados tanto para a extragio direta
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de caracteristicas, que alimentam outros classificadores,
quanto como a espinha dorsal (backbone) para modelos
mais complexos e customizados(18-20).

Uma tendéncia mais recente e notavel é a adoc¢io de
modelos da familia YOLO (You Only Look Once), que
evolufram para versdées como YOLOvV7, v8, v10 e v11.
Essa mudanca indica um foco crescente nio apenas na
acuricia da classificacio final, mas também na eficién-
cia e na aplicacdo pratica em sistemas de dois estagios,
onde a detec¢do ou segmentacao em tempo real precede
a classificacio detalhada. Paralelamente, a necessidade
de implementacio em dispositivos com menor capaci-
dade computacional, como analisadores hematolégicos
automatizados ou plataformas de telediagnéstico, im-
pulsionou o uso de modelos leves como a MobileNet
e a EfficientNet. Essas arquiteturas buscam um balanco
otimizado entre alta acuracia e baixo custo computacio-
nal(25-11-17-21).

Finalmente, a exploracio de novos paradigmas para
além das CNNs comega a emergir com a introdug¢io dos
Vision Transformers (ViT), que representam uma nova
e promissora frente de pesquisa, com estudos comparati-
vos ja demonstrando um desempenho superior para esta
tarefa especifica(26).

A partir da analise dos artigos, emergem duas estra-
tégias metodoldgicas principais para a classificacio au-
tomatizada de leucdcitos: sistemas de estagio tnico e de
dois estagios. A abordagem de estagio unico utiliza um
modelo de ponta a ponta, geralmente uma CNN como
ResNet50 ou DenseNet-161, que recebe a imagem de
uma célula e realiza diretamente a sua classificacio em
uma Unica pipeline integrada(19).

Em contrapartida, a abordagem de dois estagios, cada
vez mais comum na literatura recente, divide o problema
em duas tarefas sequenciais. Primeiramente, um algo-
ritmo € dedicado a deteccdo e segmentacdo precisa dos
leucocitos, isolando-os de outras células e do fundo da
imagem, utilizando técnicas que vdo desde a limiariza-
¢io (thresholding) até modelos de deteccao de objetos
de alta performance como a familia YOLO. A princi-
pal vantagem desta abordagem ¢é que a segunda etapa, a
classificagdo recebe como entrada uma imagem “limpa”
e focada, contendo apenas a regido de interesse (ROI)
do leucocito. Isso pode aumentar a precisio, pois o clas-
sificador (como MobileNetV3 ou EfficientNetv2) nio
precisa lidar com o ruido e a complexidade do fundo,
concentrando seu poder de aprendizado exclusivamen-
te nas caracteristicas morfologicas relevantes da célula.
Essa sepatragao de tarefas, embora potencialmente mais
complexa em sua implementa¢io, permite otimizar cada
etapa de forma independente, visando um resultado final
mais acurado(13-15).
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Além da escolha da arquitetura principal, a analise dos
artigos revela um esforco consistente dos pesquisadores
em empregar técnicas avangadas para extrair 0 maximo
de desempenho dos modelos, refinando a capacidade de
classificagdo em tarefas de alta complexidade. Esses re-
cursos adicionais podem ser agrupados em quatro cate-
gorias principais:

®  Mecanismos de Atengao: Uma técnica proemi-
nente ¢ a incorporacdo de mecanismos de atencio, que
permitem ao modelo focar dinamicamente nas carac-
teristicas morfolégicas mais discriminativas da célula,
como a textura do nicleo ou a granulacio do citoplas-
ma. Ao ponderar a importancia de diferentes regides da
imagem, esses mecanismos melhoram a distingao entre
classes com alta similaridade visual, como demonstrado
em arquiteturas como a ADCU-Net e em modelos base-
ados em YOLOvV7 com aten¢iao multi-cabeca(10).

® Aumento ¢ Geracio de Dados: Para contornar
a limitacdo de dados, especialmente para classes de leu-
cécitos mais raras que podem levar a um treinamento
desbalanceado, diversos estudos empregam estratégias
de aumento e geracdo de dados. Notavelmente, o uso de
Redes Adversarias Geradoras (GANSs), especificamente
a DCGAN (Deep Convolutional Generative Adversa-
rial Network), foi relatado como uma abordagem para
criar imagens sintéticas realistas. Essa técnica enriquece
o conjunto de treinamento, melhora a robustez do classi-
ficador e ajuda a mitigar o sobreajuste (overfitting)(4-11).

®  Modelos em Ensemble: Outra abordagem para
aumentar a precisao e a confiabilidade é o uso de mode-
los em ensemble. Em vez de confiar em um unico clas-
sificador, essa técnica combina as predi¢des de multiplos
modelos — sejam eles da mesma arquitetura ou de di-
ferentes — e agrega os resultados, frequentemente por
meio de um sistema de votacio majoritaria. Essa estraté-
gia tende a mitigar erros individuais de cada modelo e a
produzir um resultado final mais estavel e acurado(18).

e Otimiza¢gdo de Hiperparametros: Finalmente,
a otimizacio de hiperparametros por meio de métodos
sofisticados também foi observada como um fator cha-
ve para o desempenho. Técnicas que utilizam algoritmos
genéticos e de otimizagdo de enxames (como o GWO-
-GA) ou estratégias de treinamento como a Taxa de
Aprendizagem Ciclica (CLR) sido aplicadas para realizar
um ajuste fino do processo de treinamento. O objetivo é
encontrar a combinacao ideal de paraimetros (como taxa
de aprendizado e momentum) que garanta uma convet-
géncia mais rapida e um desempenho superior do mode-
lo(29).

A base de evidéncias para a classificagio de leucécitos
¢ amplamente construida sobre datasets publicos e bem
conhecidos, como o BCCD, LISC, PBC e Raabin-WBC.
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A utilizagao recorrente desses conjuntos de dados ofere-
ce a vantagem superficial de permitir um certo nivel de
comparabilidade entre os estudos. Contudo, essa compa-
rabilidade ¢é frequentemente iluséria. Reconhecendo os
limites de treinar e validar modelos em um dnico data-
set, 0 que invariavelmente leva a um sobreajuste (over-
fitting) e a uma baixa capacidade de generalizacio para
novos dados, varios estudos buscaram provar a robus-
tez de seus algoritmos. Abordagens notaveis incluem o
uso combinado de multiplos datasets ou, de forma ainda
mais rigorosa, a validagio de um modelo contra um con-
junto de teste completamente independente (6-26). Esse
desafio de validacdo externa é central, pois expOe a fragi-
lidade de muitos modelos quando confrontados com as
variagoes do mundo real, como diferentes protocolos de
coloracio, scanners de laminas e perfis de pacientes, que
ndo estavam presentes nos dados de treinamento.

A principal forca desta revisao sistematica reside na
sua abrangéncia, consolidando as diversas arquiteturas e
estratégias que definem o estado da arte. No entanto,
¢ na analise critica de suas limitagdes que emergem as
barreiras mais significativas para a translacdo clinica. A
significativa heterogeneidade metodoldgica é a limita-
¢do mais proeminente, com implica¢des clinicas diretas.
Mesmo quando utilizam o mesmo dataset publico, os au-
tores aplicam diferentes técnicas de pré-processamento,
divisao de dados e aumento sintético, o que impede uma
comparacdo direta de desempenho e torna impossivel
para um laboratério clinico determinar, com base na li-
teratura, qual o algoritmo mais robusto para sua imple-
mentacio. Essa falta de padronizacio leva a um cenario
onde métricas impressionantes, como acuracias acima de
99%, perdem o significado pratico, pois nao sao repro-
dutiveis em diferentes contextos.

Além disso, a inconsisténcia no reporte de métricas
representa um risco de viés com consequéncias clinicas
graves. Muitos artigos relatam apenas a acuracia geral,
uma medida notoriamente enganosa em datasets com
desbalanceamento de classes, como os de hematologia.
Um modelo pode, por exemplo, atingir 99% de acura-
cia a0 identificar corretamente milhares de neutrofilos,
mas falhar em reconhecer os poucos blastos presentes,
que sio o achado mais critico para o diagndstico de uma
leucemia aguda. A auséncia de um padrio para o reporte
de matrizes de confusao detalhadas e métricas por classe
(precisao, sensibilidade) oculta essas fraquezas e impe-
de uma avaliagdo real da seguranca do modelo para uso
diagnostico. Essa variabilidade metodologica, portanto,
nao apenas impede a realizacdo de uma metanalise quan-
titativa, mas também representa a principal barreira de
confianga para a adogao clinica.

Apesar desses desafios, a aplicabilidade pratica das

7

tecnologias revisadas é inegavel, especialmente quando
posicionadas como ferramentas de apoio, e ndo como
substitutos do analista. Em laboratérios clinicos, os mo-
delos podem ser integrados a sistemas de patologia digital
para funcionar como uma triagem inteligente, analisando
milhares de células em segundos para separar os esfre-
gacos normais (que poderiam ser liberados com minima
supervisio) daqueles que exigem aten¢do detalhada de
um especialista. Outra aplicagdo é como uma ferramenta
de aumento de produtividade, onde o software pré-loca-
liza e pré-classifica os leucocitos em uma lamina digital,
permitindo que o analista revise e confirme os achados
de forma muito mais rapida e ergonomica, além de ajudar
a padronizar a classificacdo entre diferentes profissionais.
Em plataformas digitais de satude, essas ferramentas sio
a espinha dorsal da telehematologia, permitindo que um
laboratério em uma area remota digitalize uma lamina e
receba uma analise preliminar precisa, que pode ser vali-
dada a distancia por um hematologista, democratizando
o0 acesso a diagndsticos de alta qualidade.

No entanto, a segunda limitagao crucial identificada
¢ o escopo da classifica¢do. A grande maioria dos estu-
dos foca na diferenciacio de um numero limitado de leu-
cécitos maduros. Embora os modelos demonstrem alta
performance nessa tarefa, o verdadeiro desafio e a maior
necessidade clinica na hematologia residem na identifica-
¢do de células imaturas e atipicas, cuja morfologia ¢é sutil
e a classificacdo, complexa. Esta lacuna indica que, apesar
do enorme progresso na automacgao da contagem dife-
rencial de rotina, os modelos atuais ainda nao abordam
o problema de maior impacto diagnéstico. O avancgo fu-
turo do campo depende, portanto, da criacio de datasets
robustos e anotados por especialistas, que incluam toda
a gama de anormalidades morfolégicas, para que a in-
teligéncia artificial possa evoluir de uma ferramenta de
automacdo para um verdadeiro parceiro no diagnostico
hematolégico de precisio.

CONCLUSAO

Esta revisao sistematica consolida as evidéncias sobre

a aplicacido do aprendizado profundo na classificagio de
leucécitos, evidenciando que diferentes arquiteturas, es-
pecialmente CNNs e modelos da familia YOLO, atingem
alta acuracia para a diferenciacio de leucécitos maduros.
Entretanto, a analise critica mostra que a heterogeneida-
de metodolégica entre os estudos, a dependéncia de ba-
ses de dados publicas limitadas, a auséncia de validacoes
externas consistentes ¢ a escassez de métricas detalhadas
ainda limitam a confian¢a e a generalizacdao dos achados.
A principal lacuna clinica permanece na detec-

¢io de células imaturas ¢ atipicas, de maior relevancia
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diagnostica. Nesse cenario, embora os resultados sejam
encorajadores, o campo exige validagdo mais robusta em
dados representativos do mundo real, além da padro-
nizagdao de protocolos experimentais. O fortalecimento
dessas evidéncias sera fundamental para que tais avancos
tecnologicos possam evoluir de forma segura e contri-
buir efetivamente no apoio ao diagndstico hematolégico.

10.
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