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Medical time series classification using global and local feature extraction
strategies

Classificação de séries temporais médicas por meio da extração de características globais e locais

André Gustavo Maletzke1, Carlos Andres Ferrero2, Chris Mayara Tibes3, Everton Alvares
Cherman4, Willian Zalewski5

ABSTRACT
Objective: Present a method to improve the accuracy of the time series classification task, as well as to enable the
interpretation of  its generated model. Method: Features were extracted from time series combining two strategies:
the global strategy, which uses statistical and complexity descriptors; and the local strategy, which uses the motif
representation. In the next step, the data was submitted to three different learning algorithms in order to create
classification models. The performances of the models were evaluated in terms of mean error rate using five medical
datasets. Results: fFr all datasets, the best classification accuracy was obtained combining both local and global
strategies. The approach improved the performance of the J48 algorithm, which generates a more interpretative
model. The comparison among 1-NN, MLP, and J48 shows no significant statistically difference. Conclusion: The
method aims at an enhanced descriptive power for time series data and increasing the performance of the models.

RESUMO
Objetivo: Apresentar um método para melhorar a precisão de classificação de séries temporais, bem como a
interpretabilidade dos modelos. Método: Foram extraídas características de séries temporais mediante duas estratégias:
a estratégia global, na qual foram utilizados descritores estatísticos e de complexidade; e a estratégia local, que
consistiu na identificação de motifs. Após, foram utilizados três algoritmos para a indução de modelos preditivos. A
eficácia dos modelos foi avaliada mediante a taxa de erro médio usando cinco bases de dados médicas. Resultados:
Para todas as bases a menor taxa de erro médio foi utilizando as estratégias de maneira combinada. O método proposto
melhorou a eficácia do algoritmo J48 e a interpretabilidade dos modelos. Na comparação entre os algoritmos 1-NN,
MLP e J48 não foi observada diferença estatística. Conclusão: O método contribuiu para a construção de modelos
simbólicos interpretáveis tão eficientes quanto os não simbólicos para a classificação de séries temporais médicas.

RESUMEN
Objetivo: Presentar un método para aumentar la precisión de clasificación de series temporales y la interpretabilidad
de los modelos. Método: Fueron determinadas características de las series mediante dos estrategias: la estrategia
global: en la cual fueron utilizados descriptores estadísticos y de complejidad; y la estratégia local, mediante la
identificación de motifs. Luego, fueron utilizados tres algoritmos para la inducción de modelos de predicción. Para
evaluar los models fue utilizada la tasa de error promedio usando cinco base de datos médicas. Resultados: Para todas
las bases la menor tasa de error fue utilizando las estategias de forma conjunta. El método ha mejorado la precisión del
algoritmo J48 y la interpretabilidad de los modelos. No fue observada diferencia estadística entre los algoritmos 1-NN,
MLP y J48. Conclusión: El método forneció modelos simbólicos interpretábles tan eficientes cuanto los demás
métodos utilizados para la clasificación de series temporales médicas.
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INTRODUCTION

Large amounts of  information that reflect the patient’s
clinical condition are generated and stored daily in medical
applications. Medical data such as Electrocardiogram
(ECG) and Electroencephalogram (EEG) exams are daily
collected around the world. These exams consist in
recording the electrical activity of the heart and brain,
respectively. The ECG and EEG exams have paramount
importance to experts because they can contribute to early
diagnosis and then provide an effective treatment for
vascular diseases and epileptic disturbances(1-3).
Unfortunately, only a small portion of  this information
will receive any further analysis to identify patterns and
build models to support the decision-making process.
Moreover, due to the large volume of ECG and EEG
data, analyses unaided by computational tools are
extremely complex and can be incomplete due to human
limitations when dealing with large amounts of  data. To
overcome these limitations, one can apply the data mining
process, supported by Machine Learning (ML) techniques.
This strategy has been promising when applied to many
other problems, and so we explore this strategy in medical
data, specifically for ECG and EEG exams. However,
there are some limitations when traditional machine
learning methods are applied directly to the data of ECGs
and EEGs. These data represent variations of  electric
pulses over time and therefore there is a temporal
relationship between each observed value, which will be
lost if traditional ML techniques are applied. Data that
have a temporal relationship between each observed value
are called time series or sequential data, and the relationship
between subsequent observations should be considered
into the process of elaborating a model. A great challenge
in machine learning is to integrate temporal and sequential
data into the data mining process. A widely used strategy
for building attributes from ECG and EEG time series
consists in determining features that describe a global
behavior(2-4).

In this paper, we present a method for building
attributes in medical temporal databases, combining global
and local features derived from different visions. Our

method improves the descriptive power of the time series
data, focusing on increasing the performance of  the
supervised learning task (classification). The method is an
improvement of a previous approach based on statistical
feature extraction and motifs discovery(5). For this, we
include new strategies to extract characteristics of time
series and provide a guide to mining medical time series
databases with a focus on building accurate symbolic
models.

The remaining of this paper is organized as follows:
section 2 describes our method and the experimental
evaluation performed. Section 3 presents the results and
the discussion of each experiment, and Section 4,
subsequently, presents the conclusions.

METHOD

The method aims to explore three different approaches
that provide different views of a time series, so that after
its application to building attributes, we achieve a
structured representation of a time series or a set of time
series, which we call the attribute-value representation. The
method is described below.

Statistical Metrics
In this strategy, we construct attributes through measures

of descriptive statistics in order to capture the overall
behavior of  the time series. Statistical measures, such as the
average, the maximum, and the minimum, are descriptive
information that have good interpretability and consequently
can contribute to maintaining the readability of the models
built. Moreover, determining descriptive statistical measures
is a simple task with low computational cost.

After the attribute construction using this strategy, we
obtain an attribute-value table, in which the attributes
represent the calculated metrics. Figure 1 (a) shows a
schematic representation of this process, where SM

1
, SM

2
,

..., SM
k
 are the different statistical metrics calculated from

the time series T
1
 and T

2
.

Statistical measure extraction enables the traditional
machine learning algorithms to be applied in an adequate
way, because the temporal relationship among the

 

Figure 1 - Schematic representation of the proposed method.
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observations no longer exists. Although the determination
of statistical measures has been widely used in the literature
in different domains, this approach cannot provide
satisfactory results in situations where the statistical
summarization is limited by the type and amount of data
available, i.e., most of ECG our EEG signals have
nonlinear or non-stationary behavior. Therefore the
following strategy aims to provide a summarization of
the time series with an alternative view to the statistical
description.

Complexity Measures
Complexity measures are intended to provide a degree

of  disorder related to the time series. This information can
differentiate or congregate time series data, based on the
degree of  disorder of  the observations, providing an
alternative to the statistical measures. There are some
desirable characteristics in a complexity measure, such as
low space and time complexities(6). There are several
complexity measures that may be determined from time
series and subsequently represented in an attribute-value table;
examples of these measures are the complexity estimate,
the entropy, and the fractal dimension. Figure 1 (b) shows
the time series representation using complexity measures
where CM

1
, CM

2
, ..., CM

k
 are different complexity metrics

extracted from the time series T
1
 and T

2
.

However, global characteristics have some drawbacks
when used to describe time series. One of  them is the
low capacity to describe local aspects of the problem at
hand. Therefore, our method explores the potential of a
third approach to represent time series, which aims to
identify some of  the local features in the time series. This
approach is presented in the following section.

Morphological Patterns
Discovering morphological patterns, called motifs, in

time series is an important data mining task, to which
increasing attention has been paid(7-9). Figure 2 show an
example of  motif  discovery.

Motif definition consists in identifying similar
subsequences in a time series in significantly different
positions(9). Motif identification can be used to overcome
the aforementioned difficulties related to the global
strategies. In this context, we want to promote the motif
transformation in an efficient way to construct a consistent
attribute-value representation. This process is illustrated
in Figure 1 (c), where MP

1
, MP

2
, ..., MP

k
 representing

different motifs found in time series T
1
 and T

2
, whose

values in the attribute-value table represent the frequency,
the presence in binary value, or the position in the time
series. The motif  identification problem in time series
requires a high computational effort: it has quadratic
complexity in the size of  the time series. In this paper, a
probabilistic approach was used(9).

As mentioned, different strategies can be used to find
motifs in time series data, but we have selected a simple
probabilistic strategy that requires only a few parameters.
In this paper, the focus is on evaluating the effectiveness
of the joint use of statistical metrics, complexity measures,
and motifs, in constructing a structured representation.
Figure 1 illustrates the goal of  the proposed method. We
present several experiments that evaluate its real
contribution.

Experiments
In this work, we report several experiments on different

medical time series related to ECG and EEG exams. The
intended contribution of our method in medical time series
problems focuses on symbolic classification models, which
we argue can give real support to the decision making
process. For that, we have selected the J48 machine learning
algorithm, which is a traditional and often employed
algorithm for inducing decision trees.

Although we concentrate on symbolic models, we
would also like to analyze the behavior of the decision
tree models compared to two of the most used machine
learning algorithms: 1-Nearest Neighbor (1-NN) and
Multilayer Perceptron (MLP). Finally, in order to evaluate
the performance of  the proposed method, we conducted
three different analyses:

a) Contribution of each strategy: we evaluated the
real contribution of  each featured extraction strategy
separately – statistical metrics, complexity metrics,
morphological patterns and all of them combined for
each machine learning algorithm;

b) Contribution of  the method in terms of
symbolic models: we also conducted a statistical analysis
considering only the symbolic models induced by the J48
algorithm for each dataset;

c) Comparison among machine learning
algorithms using our method: in this analysis, we
performed a statistical comparison between the results
obtained by the three different machine learning algorithms.

The experimental evaluation was conducted using the

Figure 2 - An example of motifs occurring in a ECG dataset.
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10-fold cross validation sampling method and the
predictive models were induced using the WEKA tool
by rWeka library for R, applying the default parameter
values. In the first analysis, we also applied the Feature
Selection (FS) task using the Correlation Feature Selection
(CFS) algorithm(10). The statistical evaluation was
conducted in the R environment and the ANOVA statistical
test with Tukey post-hoc was performed at the 95%
confidence level. The experiments were conducted on five
datasets widely known in the community. In the next
subsection, we describe the used datasets.

Datasets
The experimental evaluation was performed on five

medical time series databases obtained from two dataset
repositories: the UCR Time Series Classification/
Clustering(11), and the EEG Database from the University
of  Bonn(3). Table 1 presents a summary description of
the selected datasets.

The datasets description is presented below.
· ECG200: time series from different subjects related to
supraventricular and non-supraventricular tachycardia;
· ECGFiveDays: data of the same subject recorded at
intervals of  five days;
· TwoLeadECG: time series from MIT:BIH Long-Term
ECG Database about two-lead ECG records;
· EEG: electroencephalogram data for five healthy
patients and five epileptic patients were obtained from
the EEG Database at the University of Bonn. The
database has five datasets, A, B, C, D, and E. Sets A and
B represents data segments about healthy patients. The
data segments in C, D, and E come from epileptic patients.
We have joined the subsets into two classes representing
healthy patients (A and B) and epileptic patients (C, D,
and E);
· CinC_ECG_torso: time series obtained from ECG data
from multiple torso-surface sites.

Experimental Setup
Our method was applied using the follow parameters

for each strategy:
Statistical Metrics (SM): to construct the attributes using
statistical measures, we used the mean, maximum,
minimum, and coefficient of variation calculated over the
whole time series;
Complexity Measures (CM): to extract the degree of
disorder of the time series the following methods were

used: box counting(12), Katz(13), complexity estimate(6) and
empirical entropy(14).
Morphological Patterns (MP): the patterns were
extracted in different sizes, considering the intervals of
1% to 25% of the whole time series with increments of
1%. The Euclidean distance with z normalization was used
to calculate the similarity between two subsequences that
are possible motifs. However, only subsequences that
differ at least by 5% will be considered a motif. The
alphabet size used is composed of six characters, no
dimensionality reduction method was applied, and only
20% of the search space was explored.

RESULTS AND DISCUSSION
In this section, we present the results organized by the

objective of each analysis described in the previous section.

Contribution of the method strategies
Initially, the contribution provided by each strategy

applied in the proposed method was evaluated separately.
We start by presenting, in Figure 3, the mean errors
classification rate with its corresponding standard deviation
for each dataset, first when only one strategy is used to
induce the classifiers, and then when we combine all of
them. For the 1-NN algorithm, our method provides
better results in 60% of the datasets (Figure 3 (a)) and
80% for the MLP algorithm (Figure 3 (b)). The
performance is most evident for symbolic algorithm (J48),
which has a lower mean error rate for all datasets (100%)
(Figure 3 (c)). These results accord with our objective to
provide a generic method to construct symbolic and
accurate models for medical time series datasets. We can
observe, especially for 1-NN, datasets ECG200 and
ECGFiveDays, and MLP, dataset ECG200, that the joint
use of  the strategy produced lower classification accuracy
than when only one strategy was used. This result was
expected due to the fact that our method may produce
some morphological attributes with low discrimination
capacity. This fact is more critical with the 1-NN
algorithm, because it imputes the same weight to all
attributes; the same happens with the MLP algorithm even
considering that this algorithm can assign greater
importance to certain attributes during the neural network
training process.

In the other hand, for the J48 algorithm, all the results
were better when all the strategies were used in
combination, which can be explained by the fact that J48

Table 1 - Datasets description.

Dataset  # Ex.  Time Series Length  Class  %Class 

ECG200 200 96 1 
2 

65.5% 
33.5% 

ECGFiveDays 884 136 
1 
2 

50.0% 
50.0% 

TwoLeadECG 1162 82 1 
2 

50.0% 
50.0% 

EEG 500 4097 
1 
2 

40.0% 
60.0% 

CinC_ECG_torso 1420 1639 1 
2 

50.0% 
50.0% 
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promotes an embedded attribute selection. Thus, the CFS
algorithm was applied as a previous step for building the
classifiers. These results are included in the last bar of
Figure 3. Using CFS, an important improvement in the
classification error rate was obtained for the 1-NN
algorithm in ECG200, ECGFiveDays, and
TwoLeadECG datasets. For the MLP algorithm, the
feature selection task showed no contribution in most
datasets. The feature selection task, considering the J48
algorithm, has promoted a slight improvement except
with EEG and CinC_ECG_torso. Table 2 presents, for
each dataset, the best combination of feature extraction
strategy and supervised learning algorithm, i.e., the
combination that achieved the best mean classification
error.

It can be observed that, independently of  the classifier
used, all the best results were obtained by using the
combination of both local and global feature extraction
strategies.

Contribution of  the method in terms of  symbolic
models

In order to get an enhanced analysis, we performed a
statistical test to detect significant differences between the
strategies when the J48 algorithm is used. Figure 4 shows
the statistical comparison between the symbolic classifiers
constructed using only statistical measures, only complexity
measures, only motifs, and when all are combined. This
analysis allows us to observe statistical differences when
all strategies are employed in a combined way compared
with each strategy separately. The pairwise comparisons
between strategies, CM×MP, CM×SM, and MP×SM,
have the following p-values: 0.9996, 0.9884, and 0.9965,
respectively. However, the comparisons between each
strategy separately, CM, MP, and SM, with all strategies
combined (SM+CM+MP) have the following p-values:
0.0081, 0.0112 and 0.0200, respectively, indicating a
significant statistical difference. Another aspect that is as
important as having a good average performance on

Figure 3 - Error rates when we apply each strategy separately considering (a) 1-NN, (b) MLP and (c) J48, estimated
using 10-fold cross-validation.

Table 2 - The best combination of  feature extraction
strategy for each dataset.

Dataset  Classifier  Feature Extraction 
ECG200 1-NN SM+CM+MP with FS 
ECGFiveDays MLP SM+CM+MP 
TwoLeadECG MLP SM+CM+MP 
EEG 1-NN SM+CM+MP 
CinC_ECG_torso 1-NN SM+CM+MP 

several datasets, and which has motived us, consists in
providing a simple model with low complexity. For this,
the models’ complexity was analyzed using as a metric
the number of leafs, which defines the amount of rules
extracted by each model, i.e, this metric represents the
complexity of the knowledge that will be shown to the
experts. Figure 5 shows the complexities for each dataset
without feature selection. At this point, our method can
generate a simple model at least in four of five datasets,
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and only in one dataset the number of  rules was higher.
The complexity results are related with the mean error
observed in Figure 3, in which the mean error is superior
for the CinC_ECG_torso dataset.

Indeed, our method can produce a low number of
rules for most datasets, and thus providing a remarkable
approach for mining medical time series with a focus on
symbolic models.

Comparison among machine learning algorithms
using our method

Table 3 summarizes the efficiency of  the method for
each algorithm in terms of  the mean error classification
rate and its standard deviation. However, in order to illustrate
its potential, especially on the J48 algorithm, we performed
a statistical test among the algorithms using the proposed
method. The statistical results are shown in Figure 6. In the
statistical comparison between 1-NN and MLP, we observe
a p-value of 0.7034, and between 1-NN and J48 the p-
value was 0.1867. For the comparasion between MLP and
J48, the p-value was 0.6058. Therefore, we observe that
there are no significant differences between the three
algorithms. Our method has been an appropriate alternative
for time series mining using symbolic models.

All the statistical analyses are according with the central
assumption of this research that is: combining global
measures (statistics and complexity) with local features
(motifs) can provide more accurate symbolic models.
Hence, the results can help to elucidate the importance of
our method in enabling the use of the traditional
supervised learning algorithms, especially the symbolic
ones, in a simple way.

These results are encouraging, even in comparison to
related work that has explored the same datasets, applying
distinct approaches(4-8). Others strategies work well
reporting a very low error rates for EEG dataset, even
when only global features are used to induce non-symbolic
models(4).

Another approach extracts subsequences of time series
that could be representative of a class, named shapelets,
to induce symbolic models(7). The results are interesting
for the ECGFiveDays dataset (1.05% error rate), but for
the ECG200 and TwoLeadECG datasets the results were
weak (79.00% and 13.61%, respectively) and the
CinC_ECG_torso dataset was not explored by the
authors. Shapelets were also used to extract the best shapelets
and symbolic models were built on many datasets
including ECGFiveDays and TwoLeadECG with error
rates 3.38% and 14.75%., respectively(7). The experimental
evaluation of  the mentioned works was performed based
on the separation of the dataset into training and testing
subsets(11), except for the EEG dataset. Thus, the
comparison of the results presented in this paper with
the above ones should be made carefully. Additionally,
results show strong evidences that the use of both global
and local strategies combined with symbolic supervised
algorithms allow us to generate interpretable models with
competitive performance compared to non-symbolic
algorithms, at least for those domains represented by the
evaluated medical datasets.

It is worth mentioning that the ease to interpreting a
generated model also depends on the ease to interpreting
the concepts of  the used attributes. Overcoming this
challenge, symbolic models enable human interpretation

Figure 4 - Tukey post-hoc test comparing each strategy of  the proposed method using the J48 algorithm.

Figure 5 - The mean complexity of  the models in terms number of  rules and the respective standard deviation,
estimated using 10-fold cross-validation.
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in a easier manner if compared to other paradigms like
the neural network.

CONCLUSIONS

In this paper, a generic method to mine time series
with a focus on symbolic models has been presented.
The proposed approach employs different strategies to
enable the use of traditional machine learning algorithms
based on the assumption that models’ performance can
be improved by combining global and local features.
Different analyses of medical datasets showed the
effectiveness of  the method, chiefly for symbolic models.
The most significant contribution of this paper consists
in presenting a method to mine medical time series that

Table 3 - The classification results in terms of  mean error classification with the corresponding standard deviation,
estimated using 10-folds cross-validation.

Figure 6 - Tukey post-hoc test appplied to the 1-NN, J48 and MLP algorithms.

Dataset 
SM+CM+MP 

1-NN J48 MLP 
ECG200 28.42 (8.76) 0.48 (1.51) 27.25 (16.84) 
ECGFiveDays 17.64 (2.95) 7.57 (3.76) 3.50 (2.00) 
TwoLeadECG 10.50 (2.34) 9.90 (3.69) 2.93 (1.09) 
EEG 3.41 (2.51) 4.61 (4.22) 4.62 (2.51) 
CinC_ECG_torso 1.06 (0.76) 16.19 (2.39) 2.05 (1.46) 

 

improves the performance of  classifiers, mainly for the
symbolic ones, which also contributes to generating more
interpretative and efficient models. In future research, we
intend to explore methods to convert time series to another
representation, such as an image, using the concept of a
recurrence plot, which could be included as a new
visualization of the data, and so contribute to the method.
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