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Diagnosis of patients with blood cell count for COVID-19: An explainable
artificial intelligence approach

Diagnóstico de pacientes com hemograma para COVID-19: Uma abordagem com inteligência artificial
explicável

Kaike Wesley Reis1, Karla Patricia Oliveira-Esquerre2

ABSTRACT
Objective: Present an explainable artificial intelligence (AI) approach for COVID-19 diagnosis with blood cell
count. Methods: Five AI algorithms were evaluated: Logistic Regression, Random Forest, Support Vector Machine,
Gradient Boosting and eXtreme Gradient Boosting. A Bayesian optimization with 5-Fold cross-validation was used
to hyper-parameters tuning. The model selection evaluated three results: cross validation performance, test set
prediction performance and a backtest: performance on identifying patients negative for COVID-19, but positive for
others respiratory pathologies. Shapley Additive explanations (SHAP) was used to explain the chosen model. Results:
A Random Forest model was obtained with 77.7% F1-Score (IC95%:57.1;92.3), 85.9% AUC (IC95%:73.7;95.9),
74.4% Sensitivity (IC95%:50.0;92.1) and 97.5% Specificity (IC95%:93.6;100.0). The main features were leukocytes,
platelets and eosinophils. Conclusion: The research highlights the importance of  model interpretability, demonstrating
blood cell count as a possibility for COVID-19 diagnosis. The methodological structure developed, using TRIPOD’s
guidelines, can be extrapolated to other pathologies.

RESUMO
Objetivo: Propor uma abordagem com inteligência artificial explicável para diagnóstico de COVID-19 com hemograma.
Métodos: Cinco algoritmos de IA foram testados: Regressão Logística, Florestas Aleatórias, Máquina de Vetores de
Suporte, Gradient Boosting e eXtreme Gradient Boosting. Os hiper-parâmetros foram definidos através da otimização
bayesiana com validação cruzada 5-Fold. A seleção de modelo utilizou três resultados de desempenho para definir o
melhor modelo: validação cruzada, conjunto de teste e rendimento na identificação de pacientes negativos para
COVID-19, porém positivos para outras patologias respiratórias (backtest). Ao final, Shapley Additive explanations
(SHAP) foi utilizado para explicar o modelo escolhido. Resultados: Obteve-se um modelo Random Forest com F1-
Score de 77.7% (IC95%:57.1;92.3), AUC de 85.9% (IC95%:73.7;95.9), Sensibilidade de 74.4% (IC95%:50.0;92.1)
e Especificidade de 97.5% (IC95%:93.6;100.0). As principais variáveis foram leucócitos, plaquetas e eosinófilos.
Conclusão: A pesquisa destaca a importância da interpretabilidade do modelo, demonstrando o hemograma como
uma possibilidade para diagnosticar COVID-19. A estrutura metodológica desenvolvida no estudo, utilizando as
diretrizes do TRIPOD, pode ser extrapolada para detecção de outras patologias.

RESUMEN
Objetivo: Proponer un enfoque explicable de inteligencia artificial (IA) para el diagnóstico de COVID-19 con el uso
de hemograma. Métodos: Cinco modelos de IA fueron evaluados: Logistic Regression, Random Forest, Support Vector
Machine, Gradient Boosting e eXtreme Gradient Boosting. Los hiper-parámetros fueron definidos a través de optimización
bayesiana con validación cruzada 5-Folds. La selección del modelo se utilizó tres resultados: rendimiento del validación
cruzada, rendimento en conjunto de pruebas y el análisis de desempeño en identificación de pacientes negativos para
COVID-19, pero positivos para otras patologías respiratorias (backtest). Shapley Additive explanations (SHAP) fue
utilizado para explicar el modelo elegido. Resultados: Se obtuvo un modelo Random Forest con F1-Score de 77.7%
(IC95%:57.1;92.3), AUC de 85.9% (IC95%:73.7;95.9), Sensibilidad de 74.4% (IC95%:50.0;92.1) y Especificidad de
97.5% (IC95%:93.6;100.0). Las principales variables fueron leucocitos, plaquetas y eosinófilos. Conclusión: La
investigación presenta la importancia de la interpretabilidad del modelo, demostrando el uso de hemograma como
posibilidad para diagnosticar COVID-19. La estructura elaborada, siguiendo las directrices de TRIPOD,  puede ser
extrapolar para otras patologías.
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INTRODUCTION

The pandemic scenario caused by the SARS-CoV-2
virus, known as COVID-19, is requiring unprecedented
responses of exceptional intensity and agility from
governments. In total, over 16 million cases with at least
660 thousands deaths were reported around the world,
where the United States of America and Brazil lead these
values(1). However, to decrease and control the virus spread
is necessary several measures, including population testing.
This action in particular leads to quick identification, early
treatment, and immediate isolation to prevent more
infections(2). Given the enormous global urgency for testing
in a short period, it may be common for some countries
to suffer from a lack of stock. This identify a necessity for
alternative methods to identify COVID-19 presence.

In this current scenario, several papers presented
artificial intelligence as a solution to predict this pathology
using medical sources, mainly X-ray and Computed
tomography (CT) images, applying well-established Deep
Learning (DL) models(3-6). However, the intense urge for
results, lack of  database information, a short time for
model training and production creates doubts about their
impacts, results and mainly: trustiness.

Naudé, 2020(3)  points out that most of the growing
number of publications reporting on using AI for diagnostic
and predictive purposes with X-ray and CT images so far
tend to use small, possibly biased, and mostly Chinese-based
samples. Besides that, the lack of  quality on datasets, most
of them noisy or with outliers, can be a major problem.
Maguolo, 2020(4) presents a critical evaluation of  automatic
detection for COVID-19, showing that DL models were
learning spurious COVID-19 patterns from the dataset and
thus enhancing the necessity for better protocols to construct
fair train and test sets.

In a more general study about AI for COVID-19
diagnosis, Wynants, 2020(5) shows alarming results: all
models described were rated at high or unclear risk of
bias, mostly because of a non-representative selection of
control patients. Besides that, Wynants, 2020(5) pointed out
a high risk of model overfitting, vague reporting, absence
of any description of the study population or intended
use of the models, model predictions calibration was rarely
assessed and lack of well-defined model report.

To address those issues, Wynants, 2020(5) and Schwalbe,
2020(6) recommended TRIPOD (transparent reporting
of a multivariable prediction model for individual
prognosis or diagnosis) as a guideline standard to achieve
reliable, reproducible and interpretable results(6). Besides

X-ray and CT images, blood cell count can be used to
address COVID-19 prediction.

Through a medical literature review, a strong
relationship in changing rates of various blood
components for patients with COVID-19(7-13) was found.
In total, three countries are covered in these studies:
China(7-10,12), Singapore(11,13) and Italy(10) where most of
them highlighted an intense decrease in rates of
lymphocytes(7-9,11-13) and leukocytes(7,9,11-13) for positive cases.

Studies focused on using AI to diagnose COVID-19
with blood features were also found with promising
results. Brinati, 2020(14) presents a Random Forest with a
sensitivity of  90% and specificity of  65%. Bao, 2020(15)

shows a Support Vector Machine (SVM) with a sensitivity
of 88% and a precision of 92%. Kukar, 2020(16) used an
eXtreme Gradient Boosting (XGBoost) that achieved a
sensitivity of 81.9% and specificity of 97.9% with an
importance score. Schwab, 2020(17) presents a XGBoost
with sensitivity of 75%(95CI: 67%,81%) and a specificity
of  49%(95% CI: 46%,51%). Finally, Soares, 2020(18) shows
an ensemble of ten trained SVM-based SMOTEBoost
models with a specificity of 86%(95% CI: 85%,87%) and
a sensitivity of  70%(95% CI: 67%,73%). Table 1 shows a
diversity of sample sizes and countries evaluated in these
studies, including two works developed with the same
original dataset analyzed in this paper(17-18).

Even though most studies carried out some kind of
model’s interpretation, presented in Table 1, none addressed
possible model’s pitfalls or how a feature change could affect
the prediction. Besides that, only two studies show a result
using a clear 95% Confidence Interval(17-18) and a patient flow
diagram(16,18), both TRIPOD guideline requirements(19).

Despite the problems(3-4,19), applications with AI are
already used in the health field for diagnosis(20-21) and
decision making(21), but to increase confidence in the results
it is important to keep and maintain a pre-established
guideline(6).

To this aim, this paper presents a well-defined AI
approach, following the TRIPOD guideline to diagnose
COVID-19 using blood cell count. The development and
results presented here focus on model’s interpretation and
feature understanding, not yet seen in the literature, to
improve trustiness by health professionals in model
reports. In addition, all the code and results are available
to the public(22) to increase reproducibility.

METHODS

The studied dataset was collected, anonymized and

Table 1 - General information from studies with AI for COVID-19 diagnosis

Reference – Developed by the authors

Paper Reference Study sample size Country dataset Interpretability 
Brinati, 2020(14) 279 Italy Feature Importance    

Decision Tree Analysis 
Bao, 2020(15) 412 China Feature Ranking 

Decision Tree Analysis 
Kukar, 2020(16) 5493 Slovenia Feature Importance 
Schwab, 2020(17) 5644 Brazil Feature Importance 
Soares, 2020(18) 599 Brazil --- 
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public available by the Hospital Israelita Albert Einstein
in São Paulo, Brazil in the early months of  2020. The data
collection is hosted publicly at Kaggle’s platform(23) with
5,644 samples and 108 medical exams outcomes(18)*.

The dataset presents a high number of missing values
with 88.1% of  your records absent. Furthermore, an
unbalancing problem between positive and negative
COVID-19 cases was observed. To adress both issues, a
four-step approach was carried out: Pre-processing, Model
development, Results evaluatuon and Quantitative analysis.

Pre-processing. In this step, the study dataset was
prepared.The authors performed a missing value analysis,
but any kind of imputation could introduce either unreal
or noisy data. Most of the columns presented over 90%
of  missing values. Furthermore, there was a lack of  more
detailed information about the patients such as gender
(female and male) or the presence of some type of
comorbidity.

Therefore, a complete subset of 598 samples was
extracted from the original dataset including: COVID-19
exam result, Patient admission (the actual patient place in
the hospital), Patient age quantile, Hematocrit, Red Blood
Cells (RBC), Basophils, Eosinophils, Mean Corpuscular
Volume (MCV), Leukocytes, Mean Corpuscular

Hemoglobin Concentration (MCHC), Platelets,
Hemoglobin, Monocytes, Mean Platelet Volume (MPV),
Lymphocytes, Mean Corpuscular Hemoglobin (MCH),
Red Blood Cell distribution Width (RDW).

The “patient age quantile” column had it values divided
by the maximum quantile to remove scale problems
compared to other numeric variables, standardized
previously by the hospital. With exception of “patient age
quantile”, all remaining columns are related to red blood
count. Table 2 presented the infectious respiratory agents/
disease utilized to create a new column called “Any
respiratory disease detection”, used in backtest process
(explained in Results evaluation).

The created column shown at Table 2 is a binary
variable where a “True” value occurs if  it is detected in
the patient at least one infectious respiratory agent in your
sample and zero otherwise. Figure 1 summarizes the
information from the selected subset considering backtest
target variable.

Figure 1 shows that the balancing problem for positive
and negative cases persists. Besides that, most of  the patients
were not hospitalized and the majority that present any
infectious respiratory agent/disease were negative cases.

A correlation analysis was then performed by using

Table 2 – Respiratory pathologies agents used to create backtest process target

Figure 1 - Patient flow diagram for preprocessed dataset (ICU: Intensive Care Unit)

* According to article 1, sole paragraph, items 2 and 3 of CONEP (National Health Council) resolution n° 510, April 2016, it is not
necessary a CEP (Ethics and Research Committee) research approval for developed works that used public data sources.

Reference – Developed by the authors

Reference – Developed by the authors

Respiratory pathologies agents Backtest target 
Respiratory syncytial virus 

Any respiratory disease detection 

Influenza A virus 
Influenza A virus (H1N1) 
Influenza B virus 
Parainfluenza 1 
Parainfluenza 3 
Parainfluenza 4 
Adenovirus 
Rhinovirus/Enterovirus 
Coronavirus HKU1 
Coronavirus NL63 
Coronavirus 229e 
Coronavirus C43 
Bordetella pertussis bacteria 
Metapneumovirus 
Chlamydophila pneumoniae bacteria 
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the Spearman coefficient for the blood features to remove
highly correlated features, considering 0.8 as a threshold.
Through this analysis, RBC, hematocrit and MCH were
removed given the high correlation with hemoglobin (the
first two) and MCV respectively. In the end, the feature
space was composed of the remaining blood variables
and patient age quantile. The feature patient age quantile
was kept given the ease which it can be extracted during
an exam.

Model development. In this step, the selected subset
was split into training and test using a proportion of 85%
and 15%, respectively. This split was made with a
stratification based in the COVID-19 exam result column,
i.e., was kept the same proportion of positive (13.6%)
and negative (86.4%) of  the COVID-19 exam result target
where kept in these datasets.

After that, the Synthetic Minority Oversampling
Technique (SMOTE) was applied in the training set.
SMOTE is an oversampling technique to remove the
balancing problem between the classes in training set by
creating new synthetic positive cases(24) (was selected 5
nearest neighbours for the method). The authors selected
five well-known AI algorithms: Logistic Regression (LR),
Support Vector Machine (SVM), Random Forest (RF),
Gradient Boosting (GBM), and eXtreme Gradient
Boosting (XGBoost). The authors opted for those
methods, instead of more advanced as deep learning, given
their generalization power in learning from small datasets,
such as the selected subset.

The hyperparameters tuning for each algorithm was
defined by a Bayesian Optimization with 5-Fold Cross-
Validation (BOCV-5) in defined parameter grids spaces(22)

using F1-Score as a metric to be optimized by the algorithm.

Results evaluation
In this step, the authors picked the best model. The

model selection analyzed three major results: F1-Score
performance in BOCV-5, test set performance considering
F1-Score and AUC (Area Under the receiver operating
characteristic Curve) metrics and backtest process.

The backtest process consists in each model accuracy
performance in a subset extracted from the test set of  26
patients negative for COVID-19, but positive for other

respiratory pathologies, defined by “Any respiratory
disease detection” column. The authors developed this
procedure to evaluate if the created models presented
any possible confusion between COVID-19 and other
respiratory diseases.

At the end, the selected AI model presented F1-Score,
AUC, Sensitivity and Specificity metrics using a stratified
Bootstrap 95% Confidence Intervals (BCI95%) and
calculated through 999 bootstrapped samples extracted
from the test set(17,25) , with the same test set size and
proportion for positive and negative cases.

Qualitative analysis
In this step, the best model was analyzed with SHAP

(Shapley Additive explanations)(26) seeking to interpret how
it made the predictions, the importance behind this analysis
and possible pitfalls used to get those insights.

RESULTS AND DISCUSSION

Table 3 shows the results for F1-Score during BOCV-5.
Except for the LR models, the results show an

excellent performance during cross-validation for the
trainning set, with metrics above 90%. However, the
estimated metrics for the test set highlights RF as the best
model (see Table 4). In addition, the disparity between
this model and the others in F1-Score demonstrates a
greater generalization power and prediction of patients
positive for COVID-19, since the training set is an
unbalanced set where the majority class are negative cases
and F1-Score penalizes more false positives.

Table 5 shows backtest accuracy results for each trained
model.

GBM and XGBoost models shown the best results in
backtest process, followed by RF, SVM and LR models
(Table 5). Despite being a positive result for GBM and
XGBoost, these models may have given preference in the
prediction of  negative classes, given the low performance
in F1-Score compared to the RF model shown in Table
4. In addition, the difference between them and the RF
model is just one misclassified sample.

The authors selected the RF model as the best model,
given its greater generalization power for negative and
mainly positive patients for COVID-19 demonstrated by

Table 3 – BOCV-5 overall results for AI algorithms in training set

Table 4 – Test set performance results. In bold are highlighted the best scores

Reference – Developed by the authors

Reference – Developed by the authors

AI Algorithm F1-Score (%) AUC (%) 
LR 48.6 78.9 
SVM 51.9 85.6 
RF 78.3 94.4 
GBM 57.1 90.0 
XGBoost 58.3 88.9 

AI Algorithm F1-Score Mean (%) F1-Score Standard Deviation (%) 
LR 83.4 3.0 
SVM 94.8 1.3 
RF 94.6 2.0 
GBM 96.0 2.0 
XGBoost 93.7 2.4 
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the good results in Table 3, 4 and 5.
The best model metrics calculated using BCI95% in

test set was: 77.7% F1-Score (IC95%:57.1;92.3), 85.9%
AUC (IC95%:73.7;95.9), 74.4% Sensitivity
(IC95%:50.0;92.1) and 97.5% Specificity
(IC95%:93.6;100.0).

These results show an improvement in specificity and
an equivalent AUC compared to the study carried out by
Soares, 2020(18), using a less complex model and results
much easier to be interpreted as shown later. In addition,
compared to the study developed by Schwab, 2020(17),
the space of features is much less complex given the pre-
processing step. Both studies cited above use the same
data source publicly available on the Kaggle’s platform(23).
The RF model hyperparameters and other technical
informations can be found at the GitHub repository(22).

Figure 2 ranks the feature importance, retrieved from
selected RF model, created with gini impurity criteria. The
three most important variables identified for this study were
leukocytes, platelets and eosinophils with summed
importance of  ~45% (the importance was normalized to a
range from zero to one). Similar importance results were
found in developed AI models using datasets from Slovenia(16)

(eosinophils), Italy(10) (eosinophils and platelets) and China(15)

(leukocyte) showing a possible pattern from COVID-19.
Figure 3 presents a relation between the feature value

(represented by the color in y-axis) and the SHAP
calculated values for each training sample output
(represented by x-axis). As the SHAP value increases, the
model gains strength to report that the patient is positive
for COVID-19. In addition, by decreasing the SHAP value,
the model gains more strength to say the opposite: that
the patient is negative for COVID-19.

Through this summary analysis, the authors show that
most of the features presented patterns: decreasing

leukocytes, platelets and eosinophils implies a tendency to
report positive, the same goes to increasing monocyte
and patient age quantile. For negative reports, more
patterns were found while observing the increasing
leukocytes, platelets, eosinophils, basophils and MCV, and
decreasing MPV, patient age quantile and hemoglobin
more confidence for the RF to predict a negative case.

Still in Figure 3, as you increase leukocytes, platelets
and eosinophils count  shown as most important features
in Figure 2, higher is the model confidence in reporting a
negative case compared to positive cases given how lower
are the negative SHAP values. This clear pattern for
leukocytes, platelets and eosinophils may explain, for
example, why they were the most important for the model
in the feature importance presented in Figure 2.

Those patterns associated with positive cases were
reported in medical papers for lower values of
leukocytes(9,11-13), eosinophils(11-12) and platelets(11-12).
Surprisingly, the lymphocytes did not present a meaningful
importance for positive COVID-19 cases as happens with
Formica, 2020(10). The lymphocyte decreasing values in
patients are highly correlated with COVID-19 in several
studies(7-9,11-13).

However, latest studies presented that patients with
severe and fatal COVID-19 infection had significantly
increased leukocyte count and decreased lymphocyte and
platelet count compared to non-severe patient and
survivors(27-28), different from results shown in Figure 3
for leukocyte. This adverse result can be explained by the
period of sample collection (at the beginning of the
pandemic scenario in Brazil) and the low sample size of
patients with severe COVID-19 as shown in Figure 1,
making it difficult to generalize the model.

The results described here show SHAP analysis
importance AI interpretability, where it is possible to

Table 5 – Backtest evaluation results. In bold are highlighted the best score

Figure 2 - Random Forest feature importance results

Reference – Developed by the authors

Reference – Developed by the authors

AI Algorithm Accuracy (%) Misclassified samples 
LR 85.0 4 
SVM 85.0 4 
RF 92.0 2 
GBM 96.0 1 
XGBoost 96.0 1 
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Figure 3 - RF SHAP analysis for positive cases in the training set

understand how the model achieved that prediction
through changes in the features, bringing the possibility
of comparison with hypotheses and results at the medical
literature. It may facilitate the understanding of the model
and the discussion of the results obtained in comparison
to the current medical literature.

Given the data anonymization, situations such as
leukopenia or lymphopenia in patients cannot be assessed.
Figure 4 demonstrated some false positive cases evaluated.

The observed misclassification from the selected AI
algorithm can be used to adress possible pitfalls. In red
are presented supports to induce the RF model predict a
positive report for COVID-19 and in blue are opposite
supports: predict that the patient does not have COVID-
19, the correct outcome.

Given the higher importance for leukocyte in the model

if  the patient is negative for COVID-19, but still appears
with a lower value for this feature given any other disease
such as anemia, the model may incorrectly classify as a
positive case for COVID-19. The same goes to platelets
and eosinophils that appear with higher SHAP values for
a misclassification.

This can present a possible pitfall in the model and so
precautions are recommended when creating predictive
models for COVID-19 based on blood features. One
possible solution would be to add other features such as
patient symptoms and symptom period. This would
further improve the model to get a prediction more
focused on COVID-19.

In addition, this result shows that for this dataset, the
leukocyte count increase is highly associated with patients
negative for COVID-19, different from the current

Figure 4 - SHAP values for samples wrongly classified as positive in backtest

Reference – Developed by the authors

Reference – Developed by the authors
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predictive power for detecting patients negative for the
disease given the BCI95% specificity. Compared to the
literature, this work brought the easiest model analysis to
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The developed approach demonstrated here, based
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analysis can be used to medical interpretation, improving
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Even with great results, the use of this model for

COVID-19 would need to be carried out with caution:
given the data anonymization, many important
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