Therapies customization by emotion recognition in biosignals

Authors

  • Maíra Araújo de Santana Universidade de Pernambuco
  • Wellington Pinheiro dos Santos Universidade Federal de Pernambuco

DOI:

https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1266

Keywords:

Emotion-Focused Therapy, Music Therapy, Artificial Intelligence

Abstract

Goal: This study aimed to develop a hybrid artificial neural network architecture to recognize mood states in biosignals from elderly individuals, including those with mild to moderate dementia, to support the personalization of therapies. Method: The study employed Wavelet Transform to convert signals into images, used as input for a hybrid architecture comprising a pre-trained convolutional neural network of LeNet type for feature extraction, and a Random Forest algorithm with 450 trees for classification. The performance of the proposed algorithm was evaluated on publicly available databases of electroencephalography and voice signals, and subsequently validated on an in-house database of elderly individuals with and without dementia. Results: The achieved accuracy ranged from 71% to 73%. Conclusion: This technology can be integrated into human-machine interfaces to personalize various therapies, such as music therapy.

Author Biographies

Maíra Araújo de Santana, Universidade de Pernambuco

Doutora em Engenharia da Computação, Universidade de Pernambuco, Recife (PE), Brasil.

Wellington Pinheiro dos Santos, Universidade Federal de Pernambuco

Professor do departamento de Engenharia Biomédica, Universidade Federal de Pernambuco, Recife (PE), Brasil.

References

Vivas EN, Rocha SF. The Brazilian population aging and its contemporary challenges. MOJ Gerontol Ger. 2020;5(5):165-8. DOI: https://doi.org/10.15406/mojgg.2020.05.00251

Bloom DE, Canning D, Lubet A. Global population aging: Facts, challenges, solutions & perspectives. Daedalus. 2015;144(2):80-92. DOI: https://doi.org/10.1162/DAED_a_00332

Silva-Júnior JD. Memórias Autobiográficas e Música em Idosos. Campinas: Editora Alínea. 2018.

Peixoto CT da S. Saúde mental: um enfoque voltado à prevenção da demência de alzheimer. JHMReview [Internet]. 2021;7(3). Disponível em: https://ijhmreview.org/ijhmreview/article/view/276

Santana MA, Lima CL, Torcate AS, Fonseca FS, Santos WP. Affective computing in the context of music therapy: a systematic review. RSD [Internet]. 2021;10(15): e392101522844. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/22844 DOI: https://doi.org/10.33448/rsd-v10i15.22844

Veltmeijer EA, Gerritsen C, Hindriks KV. Automatic emotion recognition for groups: a review. IEEE Transactions on Affective Computing. 2021;14(1):89-107. DOI: https://doi.org/10.1109/TAFFC.2021.3065726

Dupré D, Krumhuber EG, Küster D, McKeown GJ. A performance comparison of eight commercially available automatic classifiers for facial affect recognition. Plos one. 2020;15(4):e0231968. DOI: https://doi.org/10.1371/journal.pone.0231968

Mallat SG. Multifrequency channel decompositions of images and wavelet models. IEEE Transactions on Acoustics, speech, and signal processing. 1989;37(12):2091-110. DOI: https://doi.org/10.1109/29.45554

Eaton JW, Bateman D, Hauberg S. GNU Octave version 3.0. 1 manual: a high-level interactive language for numerical computations. Whales: Network Theory Ltd. 2007.

Witten IH, Frank E, Hall MA. Data Mining: Practical machine learning tools and techniques. Burlington: Morgan Kaufmann Publishers. 2011.

Soleymani M, Lichtenauer J, Pun T, Pantic M. A multimodal database for affect recognition and implicit tagging. IEEE transactions on affective computing. 2011;3(1):42-55. DOI: https://doi.org/10.1109/T-AFFC.2011.25

Livingstone SR, Russo FA. The Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS): A dynamic, multimodal set of facial and vocal expressions in North American English. PloS one. 2018;13(5):e0196391. DOI: https://doi.org/10.1371/journal.pone.0196391

McHugh ML. Interrater reliability: the kappa statistic. Biochemia medica. 2012;22(3):276-82. DOI: https://doi.org/10.11613/BM.2012.031

Almeida OP. Mini exame dos estado mental e o diagnóstico de demência no Brasil. Arquivos de Neuro-psiquiatria. 1998;56:605-12. DOI: https://doi.org/10.1590/S0004-282X1998000400014

Published

2024-11-19

How to Cite

de Santana, M. A., & dos Santos, W. P. (2024). Therapies customization by emotion recognition in biosignals. Journal of Health Informatics, 16(Especial). https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1266

Similar Articles

<< < 1 2 3 4 5 6 7 8 > >> 

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)