Assessing attention mechanisms' impact on automatic brain tumor classification

Authors

  • Caio dos Santos Felipe UFCSPA
  • Thatiane Alves Pianoschi Alva UFCSPA
  • Carla Diniz Lopes Becker UFCSPA

DOI:

https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1276

Keywords:

Convolutional Neural Network, Deep Learning, Brain Tumor

Abstract

Objective: To compare a conventional convolutional neural network model and its attention-enhanced counterpart. Method: We trained both models on the same dataset images of gliomas, meningiomas, pituitary adenomas, and non-tumorous images; then, we compared both models using interpretable approaches, highlighting the regions used for their predictions. Results: Our analysis found that the attention-enhanced model focused more on tumor regions, with 99% accuracy. Conclusion: The outcome of this research underscores the importance of continued exploration into advanced neural network features to elevate the standards of diagnostic accuracy and efficiency in medical practice.

 

Author Biographies

Caio dos Santos Felipe, UFCSPA

Undergraduate Student, Federal University of Health Sciences of Porto Alegre – UFCSPA, Porto Alegre (RS), Brazil.

Thatiane Alves Pianoschi Alva, UFCSPA

Ph.D., Federal University of Health Sciences of Porto Alegre – UFCSPA, DECESA, Porto Alegre (RS), Brazil.

Carla Diniz Lopes Becker, UFCSPA

Ph.D., Federal University of Health Sciences of Porto Alegre – UFCSPA, DECESA, Porto Alegre (RS), Brazil.

References

Felipe C, Alva T, Winck A, Becker C. An approach in brain tumor classification: The development of a new convolutional neural network model. In: Anais do XX Encontro Nacional de Inteligência Artificial e Computacional. Porto Alegre: SBC; 2023. p. 28-42. doi:10.5753/eniac.2023.233530. DOI: https://doi.org/10.5753/eniac.2023.233530

An J, Joe I. Attention map-guided visual explanations for deep neural networks. Applied Sciences. 2022;12(8):3846. Available from: https://doi.org/10.3390/app12083846 DOI: https://doi.org/10.3390/app12083846

Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-cam: Visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision; 2017 Oct 22-29; Venice, Italy. p. 618-26. DOI: https://doi.org/10.1109/ICCV.2017.74

Mercaldo F, Brunese L, Martinelli F, Santone A, Cesarelli M. Explainable Convolutional Neural Networks for Brain Cancer Detection and Localisation. Sensors (Basel). 2023;23(17):7614. Published 2023 Sep 2. doi:10.3390/s23177614 DOI: https://doi.org/10.3390/s23177614

Hussain T, Shouno H. Explainable Deep Learning Approach for Multi-Class Brain Magnetic Resonance Imaging Tumor Classification and Localization Using Gradient-Weighted Class Activation Mapping. Information. 2023; 14(12):642. https://doi.org/10.3390/info14120642 DOI: https://doi.org/10.3390/info14120642

Alzahrani SM. ConvAttenMixer: Brain tumor detection and type classification using convolutional mixer with external and self-attention mechanisms. J King Saud Univ Comput Inf Sci. 2023;35(10):101810. doi: 10.1016/j.jksuci.2023.101810. DOI: https://doi.org/10.1016/j.jksuci.2023.101810

Nickparvar M. Brain tumor MRI dataset [Data set]. Kaggle. 2021. Available from: https://doi.org/10.34740/KAGGLE/DSV/2645886

Jun W, Liyuan Z. Brain Tumor Classification Based on Attention Guided Deep Learning Model. Int J Comput Intell Syst. 2022;15:35. https://doi.org/10.1007/s44196-022-00090-9 DOI: https://doi.org/10.1007/s44196-022-00090-9

Hu J, Shen L, Sun G. Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2018 Jun 18-23; Salt Lake City, UT, USA. p. 7132-41. DOI: https://doi.org/10.1109/CVPR.2018.00745

Figshare Brain Tumor Classification [Data set]. Kaggle. Available from: https://www.kaggle.com/datasets/rahimanshu/figshare-brain-tumor-classification. Last accessed 2023 May 17.

Sousa HS, Pereira Neto AA, Paula Júnior IC de, Melo CR de. Segmentação de infecções pulmonares de COVID-19 com a rede Mask R-CNN. J Health Inform [Internet]. 2023 Jul 20 [cited 2024 Mar 22];15(Especial). Available from: https://jhi.sbis.org.br/index.php/jhi-sbis/article/view/1100 DOI: https://doi.org/10.59681/2175-4411.v15.iEspecial.2023.1100

Published

2024-11-19

How to Cite

Felipe, C. dos S., Alva, T. A. P., & Becker, C. D. L. (2024). Assessing attention mechanisms’ impact on automatic brain tumor classification. Journal of Health Informatics, 16(Especial). https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1276

Similar Articles

<< < 3 4 5 6 7 8 9 10 11 12 > >> 

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)