A REST API for optical character recognition in food labels

Authors

  • Gabriel Menin UFCSPA
  • Renan Augusto Pereira UFCSPA
  • Flávia Magalhães Guedes UFCSPA
  • Ana Trindade Winck UFCSPA

DOI:

https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1316

Keywords:

Image Processing, Computer-Assisted, Food Hypersensitivity, Food Labeling

Abstract

Objective: The global prevalence of food allergies is a public health threat, particularly when allergens are inadvertently consumed. This study aims to develop an Application Programming Interface to extract ingredients information from food labels, which, when integrated into an application, can identify allergens and notify users, enabling them to make informed dietary choices. Method: This work applies an optical character recognition library, calibrated for reading and translating texts from food labels. Results: We performed tests with 76 labeled food products, divided into 7 types of materials, evaluating the similarity between actual labels and the transcriptions, achieving an average similarity rate of 81.61%. Conclusion: The solution proves viable for integration with an allergen recognition application, although the automatic transcription of labels is more favorable for certain types of materials and shapes of food packaging, requiring better calibration for others.

Author Biographies

Gabriel Menin, UFCSPA

Bel, Federal University of Health Sciences of Porto Alegre - UFCSPA, Porto Alegre (RS), Brazil.

Renan Augusto Pereira, UFCSPA

Me, Federal University of Health Sciences of Porto Alegre - UFCSPA, Porto Alegre (RS), Brazil.

Flávia Magalhães Guedes, UFCSPA

Me, Federal University of Health Sciences of Porto Alegre - UFCSPA, Porto Alegre (RS), Brazil.

Ana Trindade Winck, UFCSPA

Dra, Federal University of Health Sciences of Porto Alegre - UFCSPA, Porto Alegre (RS), Brazil.

References

Lobo FATF, Santos MA dos, Montes LTP. Alergia Alimentar: Um Problema Crescente. Saúde em Foco. 2021; 8(3):39–53. DOI: https://doi.org/10.12819/rsf.2021.8.3.3

Berzuino MB, Fernandes RDC de Sá, Lima MDA, Matias ACG, Pereira IRO. ALERGIA ALIMENTAR E O CENÁRIO REGULATÓRIO NO BRASIL. Revista Eletrônica de Farmácia. 2017 Sep 18;14(2). DOI: https://doi.org/10.5216/ref.v14i2.43433

Solé D, Silva LR, Cocco RR, Ferreira CT, Sarni RO, Oliveira LC, et al. Consenso Brasileiro sobre Alergia Alimentar: 2018 - Parte 2 - Diagnóstico, tratamento e prevenção. Documento conjunto elaborado pela Sociedade Brasileira de Pediatria e Associação Brasileira de Alergia e Imunologia. Arquivos de Asma, Alergia e Imunologia. 2018;2(1). DOI: https://doi.org/10.5935/2526-5393.20180005

O que é o Desrotulando? | Desrotulando - Central de Ajuda [Internet]. Available from: https://ajuda.desrotulando.com/pt-BR/articles/6301097-o-que-e-o-desrotulando.

J. Memon, M. Sami, R. A. Khan and M. Uddin, "Handwritten Optical Character Recognition (OCR): A Comprehensive Systematic Literature Review (SLR)," in IEEE Access, vol. 8, pp. 142642-142668, 2020 DOI: https://doi.org/10.1109/ACCESS.2020.3012542

Johan EB, Rizal A. Allergen Recognition in Food Ingredients with Computer Vision. Ultima Computing : Jurnal Sistem Komputer. 202;13(2):44–9. DOI: https://doi.org/10.31937/sk.v13i2.2051

Matsunaga N, Sullivan R. Image processing for the extraction of nutritional information from food labels [Internet] [PDF]. [Santa Clara: Santa Clara University]; 2015. Available from: https://scholarcommons.scu.edu/cgi/viewcontent.cgi?article=1041&context=cseng_senior.

Cakic S, Popovic T, Sandi S, Krco S, Gazivoda A. The Use of Tesseract OCR Number Recognition for Food Tracking and Tracing. 2020 24th International Conference on Information Technology (IT). Zabljak, Montenegro, 2020, pp. 1-4. DOI: https://doi.org/10.1109/IT48810.2020.9070558

MongoDB Documentation [Internet]. https://github.com/mongodb/docs-bi-connector/blob/DOCSP-3279/source/index.txt. Available from: https://www.mongodb.com/docs.

Webb P, Syer D, Long J, Nicoll S, Winch R, Wilkinson A, et al. Spring Boot Reference Documentation [Internet]. Available from: https://docs.spring.io/spring-boot/docs/3.1.5/reference/pdf/spring-boot-reference.pdf.

Wang Y, Qin J, Wang W. Efficient Approximate Entity Matching Using Jaro-Winkler Distance. In Web Information Systems Engineering – WISE 2017: 18th International Conference, Puschino, Russia, October 7-11, 2017, Proceedings, Part I. Springer-Verlag, Berlin, Heidelberg, 231–239. DOI: https://doi.org/10.1007/978-3-319-68783-4_16

Get Started With The OpenAPI Specification [Internet]. Swagger.io. 2021. . Available from: https://swagger.io/solutions/getting-started-with-oas/.

Published

2024-11-19

How to Cite

Menin, G., Pereira, R. A., Guedes, F. M., & Winck, A. T. (2024). A REST API for optical character recognition in food labels. Journal of Health Informatics, 16(Especial). https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1316

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.