A novel binary patterns approach on chest radiographs to advance tuberculosis diagnosis

Authors

  • Afonso Ueslei da Fonseca da Fonseca Universidade Federal de Goiás
  • Emilia Alves Nogueira Universidade Federal de Goiás
  • Ana Luisa de Bastos Chagas Universidade Federal de Goiás
  • Juliana Paula Felix Universidade Federal de Goiás
  • Deborah Silva Alves Fernandes Universidade Federal de Goiás
  • Fabrizzio Soares Universidade Federal de Goiás

DOI:

https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1349

Keywords:

Diagnosis, Artificial intelligence, Tuberculosis

Abstract

Objective: Tuberculosis (TB) affects millions of people, especially the most miserable, revealing social inequalities. Despite advances in artificial intelligence (AI) in TB control, few benefits reach those most in need. This study proposes an optimized AI to discriminate TB cases from healthy individuals. Method: The approach incorporates phase congruence descriptors and local binary patterns into a sequential minimum optimization (SMO) model to analyze chest radiographs (CXR). Results: The optimized AI performs better than existing approaches in the literature, delivering a specificity value greater than 97% in different bases and segmentation scenarios. Conclusion: Applying the proposed AI in RXT analysis could represent a significant advance in TB control, especially in populations most in need, as it constitutes an accessible and effective solution that opens up possibilities for developing new diagnostic support systems.

Author Biographies

Afonso Ueslei da Fonseca da Fonseca, Universidade Federal de Goiás

Doutor(a), Instituto de Informática, Universidade Federal de Goiás, GO, Brasil.

Emilia Alves Nogueira, Universidade Federal de Goiás

Doutoranda, Instituto de Informática, Universidade Federal de Goiás, GO, Brasil.

Ana Luisa de Bastos Chagas, Universidade Federal de Goiás

Graduanda, Instituto de Informática, Universidade Federal de Goiás, GO, Brasil.

Juliana Paula Felix, Universidade Federal de Goiás

 Doutor(a), Instituto de Informática, Universidade Federal de Goiás, GO, Brasil.

Deborah Silva Alves Fernandes, Universidade Federal de Goiás

Doutor(a), Instituto de Informática, Universidade Federal de Goiás, GO, Brasil.

Fabrizzio Soares, Universidade Federal de Goiás

Doutor(a), Instituto de Informática, Universidade Federal de Goiás, GO, Brasil.

References

WHO (2023). Global tuberculosis report 2023. World Health Organization, Geneva. License: CC BY-NC-SA 3.0 IGO.

Kulkarni, S. and Jha, S. (2020). Artificial intelligence, radiology, and tuberculosis: a review. Academic radiology, 27(1):71–75. DOI: https://doi.org/10.1016/j.acra.2019.10.003

Lakhani, P. and Sundaram, B. (2017). Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks. Radiology, 284(2):574–582. DOI: https://doi.org/10.1148/radiol.2017162326

Jaeger, S., Karargyris, A., Candemir, S. et al. (2013). Automatic screening for tuberculosis in chest radiographs: a survey. Quantitative imaging in medicine and surgery, 3(2):89.

Çallı, E., Sogancioglu, E., van Ginneken, B., van Leeuwen, K. G., and Murphy, K. (2021). Deep learning for chest x-ray analysis: A survey. Medical Image Analysis, 72:102125. DOI: https://doi.org/10.1016/j.media.2021.102125

Jaeger, S., Candemir, S., Antani, S. et al. (2014). Two public chest x-ray datasets for computer-aided screening of pulmonary diseases. Quantitative imaging in medicine and surgery, 4(6):475.

Sousa, R. T., Marques, O., Curado, G. T. et al. (2014). Evaluation of classifiers to a childhood pneumonia computer-aided diagnosis system. In 2014 IEEE 27th International Symposium on Computer-Based Medical Systems, p. 477–478. IEEE. DOI: https://doi.org/10.1109/CBMS.2014.98

Chauhan, A., Chauhan, D., and Rout, C. (2014). Role of Gist and PHOG features in computer-aided diagnosis of tuberculosis without segmentation. PloS one, 9(11):e112980. DOI: https://doi.org/10.1371/journal.pone.0112980

Singh, N. and Hamde, S. (2019). Tuberculosis detection using shape and texture features of chest X-rays. In Innovations in Electronics and Communication Engineering, p. 43–50. Springer. DOI: https://doi.org/10.1007/978-981-13-3765-9_5

Vajda, S., Karargyris, A., Jaeger, S., et al. (2018) Feature selection for automatic tuberculosis screening in frontal chest radiographs. Journal of medical systems, 42(8):1–11. DOI: https://doi.org/10.1007/s10916-018-0991-9

Fonseca, A. U., Rocha, B. M., Nogueira et al. (2022). Tuberculosis detection in chest radiography: A combined approach of local binary pattern features and monarch butterfly optimization algorithm. In 2022 IEEE 46th Annual Computers, Software, and Applications Conference (COMPSAC), p. 1408–1413. IEEE. DOI: https://doi.org/10.1109/COMPSAC54236.2022.00223

Xu, T., Cheng, I., Long, R., and Mandal, M. (2013). Novel coarse-to-fine dual scale technique for tuberculosis cavity detection in chest radiographs. EURASIP Journal on Image and Video Processing, 2013(1):1–18. DOI: https://doi.org/10.1186/1687-5281-2013-3

Alfadhli, F. H. O., Mand, A. A., Sayeed, M. S. et al. (2017). Classification of tuberculosis with surf spatial pyramid features. In 2017 International Conference on Robotics, Automation and Sciences (ICORAS), p. 1–5. IEEE. DOI: https://doi.org/10.1109/ICORAS.2017.8308044

Lopes, U. and Valiati, J. F. (2017). Pre-trained convolutional neural networks as feature extractors for tuberculosis detection. Computers in biology and medicine, 89:135–143. DOI: https://doi.org/10.1016/j.compbiomed.2017.08.001

Rajaraman, S., Zamzmi, G., Folio, L. et al. (2021). Chest X-ray bone suppression for improving classification of tuberculosis-consistent findings. Diagnostics, 11(5):840. DOI: https://doi.org/10.3390/diagnostics11050840

Rajaraman, S., Folio, L. R., Dimperio, J. et al. (2021). Improved semantic segmentation of tuberculosis—Consistent findings in chest x-rays using augmented training of modality-specific U-Net models with weak localizations. Diagnostics, 11(4):616. DOI: https://doi.org/10.3390/diagnostics11040616

Nafisah, S. I. and Muhammad, G. (2022). Tuberculosis detection in chest radiograph using convolutional neural network architecture and explainable artificial intelligence. Neural Computing and Applications, p. 1–21. DOI: https://doi.org/10.1007/s00521-022-07258-6

Pasa, F., Golkov, V., Pfeiffer, F. et al. (2019). Efficient deep network architectures for fast chest X-ray tuberculosis screening and visualization. Scientific reports, 9(1):1–9. DOI: https://doi.org/10.1038/s41598-019-42557-4

Alawi, A. E. B., Al-basser, A., Sallam, A. et a. (2021). Convolutional neural networks model for screening tuberculosis disease. In 2021 International Conference of Technology, Science and Administration (ICTSA), p. 1–5. IEEE. DOI: https://doi.org/10.1109/ICTSA52017.2021.9406520

Rajaraman, S., Antani, S., Candemir, S. et al. (2018). Comparing deep learning models for population screening using chest radiography. In Medical Imaging 2018: Computer-Aided Diagnosis, volume 10575, p. 322–332. SPIE.

Srimathi, D. H., Rose, D. P., et al. (2020). A Comparative Study On Performance Of Pre-Trained Convolutional Neural Networks In Tuberculosis Detection. European Journal of Molecular & Clinical Medicine, 7(3):4852–4858.

Oltu, B., Güney, S., Dengiz, B., and Agıldere, M. (2021). Automated Tuberculosis Detection Using Pre-Trained CNN and SVM. In 2021 44th International Conference on Telecommunications and Signal Processing (TSP), p. 92–95. DOI: https://doi.org/10.1109/TSP52935.2021.9522644

Khobragade, S., Tiwari, A., Patil, C., and Narke, V. (2016). Automatic detection of major lung diseases using chest radiographs and classification by feed-forward artificial neural network. In 2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), p. 1–5. DOI: https://doi.org/10.1109/ICPEICES.2016.7853683

Fonseca, A. U., Parreira, P. L., da Silva Vieira, G. S. et al. (2024). A novel tuberculosis diagnosis approach using feedforward neural networks and binary pattern of phase congruency. Intelligent Systems with Applications, 21:200317. DOI: https://doi.org/10.1016/j.iswa.2023.200317

Fonseca, A. U., Felix, J. P., Vieira, G. S. et al. (2023). Diagnosticando Tuberculose com Redes Neurais Artificiais e Recursos BPPC. Journal of Health Informatics, 15(Especial). DOI: https://doi.org/10.59681/2175-4411.v15.iEspecial.2023.1106

Platt, J. (1998). Fast training of support vector machines using sequential minimal optimization. In Advances in Kernel Methods - Support Vector Learning. MIT Press. DOI: https://doi.org/10.7551/mitpress/1130.003.0016

Reeves, S. and Zhe, Z. (1999). Sequential algorithms for observation selection. IEEE Transactions on Signal Processing, 47(1):123–132. DOI: https://doi.org/10.1109/78.738245

Gozes, O. and Greenspan, H. (2019). Deep feature learning from a hospital-scale chest x-ray dataset with application to TB detection on a small-scale dataset. In 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), p. 4076–4079. IEEE. DOI: https://doi.org/10.1109/EMBC.2019.8856729

Published

2024-11-19

How to Cite

da Fonseca, A. U. da F., Nogueira, E. A., Chagas, A. L. de B., Felix, J. P., Fernandes, D. S. A., & Soares, F. (2024). A novel binary patterns approach on chest radiographs to advance tuberculosis diagnosis. Journal of Health Informatics, 16(Especial). https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1349

Similar Articles

1 2 3 4 5 6 7 8 9 > >> 

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)