Máquina de vectores de soporte para la predicción de ansiedad en pacientes de rehabilitación de dependencia química
DOI:
https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1333Palabras clave:
Ansiedad, Dependencia Química, Aprendizaje AutomáticoResumen
Objetivo: Relacionar variables clínicas de internos en rehabilitación química con la ansiedad, mediante el método de aprendizaje automático. Método: Estudio de campo realizado en una Comunidad Terapéutica, considerando datos de 25 internos. Entre los parámetros se encuentran las sustancias psicoactivas de dependencia, tiempo de uso y abstinencia, edad y el cuestionario GAD-7. El algoritmo utilizado fue la Máquina de Vectores de Soporte (SVM). Las métricas de análisis de rendimiento fueron: matriz de confusión y el AUC. Resultados: La prevalencia de rehabilitación en cocaína o crack fue del 92% de los internos, seguida por alcohol en un 76%. Las métricas más altas fueron una precisión del 68%, sensibilidad del 89%, especificidad del 88%, puntaje F1 del 59% y un AUC de 0.91. Conclusión: El SVM demostró ser prometedor para su uso en la predicción de ansiedad en internos en proceso de recuperación de sustancias psicoactivas.
Citas
Atendimento a pessoas com transtornos mentais por uso de álcool e drogas aumenta 12% no SUS [Internet]. Ministério da Saúde. 2022.
de Matos MB, de Mola CL, Trettim JP, Jansen K, da Silva RA, Souza LD de M, et al. Psychoactive substance abuse and dependence and its association with anxiety disorders: a population-based study of young adults in Brazil. Revista Brasileira de Psiquiatria. 2018 Feb 15;40(4):349–53. DOI: https://doi.org/10.1590/1516-4446-2017-2258
Soraya S, Mahdavi M, Saeidi M, Seddigh R, Nooraeen S, Sadri M, et al. Prevalence of anxiety disorders and its co-occurrence with substance use disorder: a clinical study. Middle East Current Psychiatry. 2022 Apr 20;29(1). DOI: https://doi.org/10.1186/s43045-022-00197-x
Chhetri B, Goyal LM, Mittal M. How machine learning is used to study addiction in digital healthcare: A systematic review. International Journal of Information Management Data Insights. 2023 Nov;3(2):100175. DOI: https://doi.org/10.1016/j.jjimei.2023.100175
Albagmi, Faisal Mashel, et al. Prediction of generalized anxiety levels during the Covid-19 pandemic: A machine learning-based modeling approach. Informatics in Medicine Unlocked. 28 (2022): 100854. DOI: https://doi.org/10.1016/j.imu.2022.100854
Pintelas EG, Kotsilieris T, Livieris IE, Pintelas P. A review of machine learning prediction methods for anxiety disorders. Proceedings of the 8th International Conference on Software Development and Technologies for Enhancing Accessibility and Fighting Info-exclusion. 2018 Jun 20; DOI: https://doi.org/10.1145/3218585.3218587
Castro RA de, Ruas RN, Abreu RC, Rocha RB, Ferreira R de F, Lasmar RC, et al. Crack: pharmacokinetics, pharmacodynamics, and clinical and toxic effects. Revista Médica de Minas Gerais [Internet]. 2015;25(2). Available from: http://rmmg.org/exportar-pdf/1782/v25n2a17.pdf DOI: https://doi.org/10.5935/2238-3182.20150045
Spitzer R, Kroenke K, Williams J, Löwe B. A Brief Measure for Assessing Generalized Anxiety Disorder: The GAD-7 [Internet]. Archives of internal medicine. 2006. Available from: https://pubmed.ncbi.nlm.nih.gov/16717171/ DOI: https://doi.org/10.1001/archinte.166.10.1092
de Amorim LBV, Cavalcanti GDC, Cruz RMO. The choice of scaling technique matters for classification performance. Applied Soft Computing [Internet]. 2023 Jan;133:109924. Available from: https://arxiv.org/pdf/2212.12343 DOI: https://doi.org/10.1016/j.asoc.2022.109924
Brereton RG, Lloyd GR. Support Vector Machines for classification and regression. The Analyst. 2010;135(2):230–67. DOI: https://doi.org/10.1039/B918972F
Li Y, Cui Z, Liao Q, Dong H, Zhang J, Shen W, et al. Support vector machine‐based multivariate pattern classification of methamphetamine dependence using arterial spin labeling. Addiction Biology. 2019 Jan 9;24(6):1254–62. DOI: https://doi.org/10.1111/adb.12705
Yang L, Shami A. On hyperparameter optimization of machine learning algorithms: Theory and practice. Neurocomputing. 2020 Nov;415:295–316. DOI: https://doi.org/10.1016/j.neucom.2020.07.061
King RD, Orhobor OI, Taylor CC. Cross-validation is safe to use. Nature Machine Intelligence [Internet]. 2021 Apr 1;3(4):276–6. Available from: https://www.nature.com/articles/s42256-021-00332-z DOI: https://doi.org/10.1038/s42256-021-00332-z
Rocha J de L, Salles EOT, Andreão RV. Detecção da Apneia Obstrutiva do Sono Através da Variabilidade da Frequência Cardíaca. J Health Inform [Internet]. 20º de julho de 2023 [citado 27º de maio de 2024];15(Especial). Disponível em: https://jhi.sbis.org.br/index.php/jhi-sbis/article/view/1084 DOI: https://doi.org/10.59681/2175-4411.v15.iEspecial.2023.1084
Yates LA, Aandahl Z, Richards SA, Brook BW. Cross validation for model selection: a review with examples from ecology. Ecological Monographs. 2022 Nov 13;93(1). DOI: https://doi.org/10.1002/ecm.1557
Marzban C. The ROC Curve and the Area under It as Performance Measures. Weather and Forecasting. 2004 Dec;19(6):1106–14. DOI: https://doi.org/10.1175/825.1
Hicks SA, Strümke I, Thambawita V, Hammou M, Riegler MA, Halvorsen P, et al. On evaluation metrics for medical applications of artificial intelligence. Scientific Reports [Internet]. 2022 Apr 8;12(1):5979. Available from: https://www.nature.com/articles/s41598-022-09954-8 DOI: https://doi.org/10.1038/s41598-022-09954-8
Tabares T, Vélez Álvarez, Consuelo, Salcedo B, Murillo Rendón, Santiago. Anxiety in Young People: Analysis from a Machine Learning Model. 2024 Jan 1 [cited 2024 May 27]; Available from: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4791415
Sau A, Bhakta I. Screening of anxiety and depression among seafarers using machine learning technology. Informatics in Medicine Unlocked. 2019;16:100228. DOI: https://doi.org/10.1016/j.imu.2019.100228
Park SJ, Lee SJ, Kim H, Kim JK, Chun JW, Lee SJ, et al. Machine learning prediction of dropping out of outpatients with alcohol use disorders. Le KNQ, editor. PLOS ONE. 2021 Aug 2;16(8):e0255626. DOI: https://doi.org/10.1371/journal.pone.0255626
Back SE, Brady KT. Anxiety Disorders with Comorbid Substance Use Disorders: Diagnostic and Treatment Considerations. Psychiatric Annals. 2008 Nov 1;38(11):724–9. DOI: https://doi.org/10.3928/00485713-20081101-01
Smith JP, Book SW. Anxiety and Substance Use Disorders: A Review. The Psychiatric times [Internet]. 2008;25(10):19–23. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2904966/
Gimeno C, Dorado ML, Roncero C, Szerman N, Vega P, Balanzá-Martínez V, et al. Treatment of Comorbid Alcohol Dependence and Anxiety Disorder: Review of the Scientific Evidence and Recommendations for Treatment. Frontiers in Psychiatry [Internet]. 2017 Sep 22;8(173). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5614930/ DOI: https://doi.org/10.3389/fpsyt.2017.00173
Kampman KM. New Medications for the Treatment of Cocaine Dependence. Psychiatry (Edgmont) [Internet]. 2005 Dec 1;2(12):44–8. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2994240/
Schwartz EKC, Wolkowicz NR, De Aquino JP, MacLean RR, Sofuoglu M. Cocaine Use Disorder (CUD): Current Clinical Perspectives. Substance Abuse and Rehabilitation. 2022 Sep;Volume 13:25–46. DOI: https://doi.org/10.2147/SAR.S337338
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
La sumisión de un artículo a el Journal of Health Informatics es entendida como exclusiva y que no esta siendo considerado para publicación en otro periódico. La permisión de los autores para la publicación de su artículo en lo JHI implica en la exclusiva autorización concedida a los editores para su inclusión en la revista. Al someter un artículo, a lo autor será solicitada la permisión electrónica de una Nota de Copyright. Una mensaje electrónica será enviada a lo autor correspondiente confirmando el recibo del manuscrito y lo aceite de la Nota de Copyright.