Red neuronal artificial aplicada al diagnóstico del cáncer de próstata

Autores/as

  • Wesley Batista Dominices de Araujo Universidade Federal do Maranhão
  • Ewaldo Eder Carvalho Santana Universidade Estadual do Maranhão
  • Nilviane Pires Silva Universidade Federal do Maranhão
  • Carlos Magno Sousa Junior Universidade Estadual do Maranhão
  • Giullianno Lopes Moura Universidade Federal do Maranhão
  • José Arnon Linhares Moraes dos Santos Universidade Federal do Maranhão
  • Paloma Larissa Arruda Lopes Universidade Federal do Maranhão
  • Wesley do Nascimento Silva Universidade Federal do Maranhão
  • João Pedro Pereira Gonçalves Universidade Federal do Maranhão
  • Felipe Castelo Branco Rocha Silva Universidade Federal do Maranhão

DOI:

https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1371

Palabras clave:

Red Neural Artificial, Diagnóstico, Cáncer de próstata

Resumen

Objetivo: Desarrollar un método para ayudar en el diagnóstico del cáncer de próstata utilizando Rede Neuronal Artificial aplicadas a variables clínicas. Método: Se realizó una investigación observacional retrospectiva en 274 prontuarios del Hospital Universitario de la Universidad Federal de Maranhão. Se utilizaron las variables clínicas: edad, raza, hipertensión arterial sistémica, diabetes mellitus, tabaquismo, consumo de alcohol, examen de tacto rectal y PSA total. Se creó un modelo de Red Neuronal Artificial para la clasificación predictiva. Resultados: El modelo presentó una precisión del 80%, sensibilidad del 80%, especificidad del 80% y área bajo la curva ROC de 0,9027. Conclusión: Se obtuvo excelente desempeño en la predicción del cáncer de próstata. Este método se puede incorporar a la práctica clínica, ya que los médicos y los pacientes pueden aprovechar sus beneficios al reducir las biopsias innecesarias sin comprometer la capacidad de diagnosticar el cáncer de próstata.

Biografía del autor/a

Wesley Batista Dominices de Araujo, Universidade Federal do Maranhão

 Programa de Pós-graduação em Engenharia Elétrica, Universidade Federal do Maranhão - UFMA, São Luís (MA), Brasil.

Ewaldo Eder Carvalho Santana, Universidade Estadual do Maranhão

Departamento de Engenharia da Computação, Universidade Estadual do Maranhão - UEMA, São Luís (MA), Brasil.

Nilviane Pires Silva, Universidade Federal do Maranhão

Programa de Pós-graduação em Engenharia Elétrica, Universidade Federal do Maranhão - UFMA, São Luís (MA), Brasil.

Carlos Magno Sousa Junior, Universidade Estadual do Maranhão

Departamento de Engenharia da Computação, Universidade Estadual do Maranhão - UEMA, São Luís (MA), Brasil.

Giullianno Lopes Moura, Universidade Federal do Maranhão

Hospital Universitário da Universidade Federal do Maranhão – HU-UFMA, São Luís (MA), Brasil.

José Arnon Linhares Moraes dos Santos, Universidade Federal do Maranhão

Hospital Universitário da Universidade Federal do Maranhão – HU-UFMA, São Luís (MA), Brasil.

Paloma Larissa Arruda Lopes, Universidade Federal do Maranhão

 Departamento de Medicina, Universidade Federal do Maranhão - UFMA, São Luís (MA), Brasil.

Wesley do Nascimento Silva, Universidade Federal do Maranhão

Departamento de Medicina, Universidade Federal do Maranhão - UFMA, São Luís (MA), Brasil.

João Pedro Pereira Gonçalves, Universidade Federal do Maranhão

Departamento de Medicina, Universidade Federal do Maranhão - UFMA, São Luís (MA), Brasil.

Felipe Castelo Branco Rocha Silva, Universidade Federal do Maranhão

Departamento de Medicina, Universidade Federal do Maranhão - UFMA, São Luís (MA), Brasil.

Citas

Kim MH, Yoo S, Choo MS, Cho MC, Son H, Jeong H. The role of the serum 25-OH vitamin D level on detecting prostate cancer in men with elevated prostate-specific antigen levels. Sci Rep. 2022 Aug;12:14089. Available from: https://doi.org/10.1038/s41598-022-17563-8. DOI: https://doi.org/10.1038/s41598-022-17563-8

Lee C, Light A, Alaa A, Thurtle D, Schaar M, Gnanapragasam VJ. Application of a novel machine learning framework for predicting non-metastatic prostate cancer-specific mortality in men using the Surveillance, Epidemiology, and End Results (SEER) database. The Lancet Digital Health. 2021 Mar;3:158-165. Available from: https://doi.org/10.1016/S2589-7500(20)30314-9. DOI: https://doi.org/10.1016/S2589-7500(20)30314-9

American Cancer Society. Key Statistics for Prostate Cancer [Internet]. 2024 [cited 2024 Jan 19]. Available from: https://www.cancer.org/cancer/types/prostate-cancer/about/key-statistics.html.

INCA. Câncer de Próstata. Instituto Nacional de Câncer [Internet]. 2023 [cited 2023 Aug 16]. Available from: https://www.inca.gov.br/tipos-de-cancer/cancer-de-prostata.

American Cancer Society. Prostate Cancer Risk Factors. [Internet]. 2023 [cited 2023 Nov 22]. Available from: https://www.cancer.org/cancer/types/prostate-cancer/causes-risks-prevention/risk-factors.html.

Cosma G, McArdle SE, Foulds GA, Hood SP, Reeder S, Johnson C, et al. Prostate Cancer: Early Detection and Assessing Clinical Risk Using Deep Machine Learning of High Dimensional Peripheral Blood Flow Cytometric Phenotyping Data. Front Immunol. 2021 Dec;12:786828. Available from: https://doi.org/10.3389/fimmu.2021.786828. DOI: https://doi.org/10.3389/fimmu.2021.786828

Correas JM, Halpern EJ, Barr RG, Ghai S, Walz J, Bodard S, Dariane C, Rosette J, Advanced ultrasound in the diagnosis of prostate cancer, World J. Urol. 2020 Apr;39:661-676. Available from: https://doi.org/10.1007/s00345-020-03193-0. DOI: https://doi.org/10.1007/s00345-020-03193-0

Nasrabadi NM. Pattern Recognition and Machine Learning. Journal of Electronic Imaging. 2007 Oct;16(4):049901. Available from: https://doi.org/10.1117/1.2819119. DOI: https://doi.org/10.1117/1.2819119

Faceli K, Lorena AC, Gama J, Carvalho ACPLF. Inteligência Artificial: Uma Abordagem de Aprendizagem de Máquina. 2ª edição. Editora LTC – Livros Técnicos e Científicos. Rio de Janeiro, 2021.

Fonseca AU, Felix JP, Vieira GS, Rocha BM, Nogueira EA, Araújo CEE, et al. Diagnosticando Tuberculose com Redes Neurais Artificiais e Recursos BPPC. J Health Inform [Internet]. 20º de julho de 2023 [citado 16º de maio de 2024];15(Especial). Disponível em: https://jhi.sbis.org.br/index.php/jhi-sbis/article/view/1106 DOI: https://doi.org/10.59681/2175-4411.v15.iEspecial.2023.1106

Santos PD, Yahata E, Piheiro TS, Oliveira FS de, Simões PW. Algoritmos de Machine Learning para Predição da Sobrevida do Câncer de Mama. J Health Inform [Internet]. 20º de julho de 2023 [citado 16º de maio de 2024];15(Especial). Disponível em: https://jhi.sbis.org.br/index.php/jhi-sbis/article/view/1091 DOI: https://doi.org/10.59681/2175-4411.v15.iEspecial.2023.1091

Nacional Cancer Institute. Prostate cancer risk factors. American Cancer Society [Online], 2023. Prostate Cancer. Available from: https://www.cancer.org/cancer/types/prostate-cancer/causes-risks-prevention/risk-factors.html.

Erickson BJ, Korfiatis P, Akkus Z, Kline TL. Machine learning for medical imaging, Radiographics. 2017 Feb;37(2):505–515. Available from: https://doi.org/10.1148/rg.2017160130. DOI: https://doi.org/10.1148/rg.2017160130

Kohavi R. A study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection, in: International joint Conference on artificial intelligence. 1995 Aug;2:1137-1145. Available from: https://dl.acm.org/doi/10.5555/1643031.1643047.

Wang X, Yang W, Weinreb J, Han J, Li Q, Kong X, et al. Searching for prostate cancer by fully automated magnetic resonance imaging classification: deep learning versus non-deep learning. Sci Rep. 2017 Nov;7:15415. Available from: https://doi.org/10.1038/s41598-017-15720-y. DOI: https://doi.org/10.1038/s41598-017-15720-y

Liu J, Wang ZQ, Li M, Zhou MY, Yu YF, Zhan WW. Establishment of two new predictive models for prostate cancer to determine whether to require prostate biopsy when the PSA level is in the diagnostic gray zone (4–10 ng ml−1). Asian Journal of Andrology. 2019 Mar;22(2):213-216. Available from: https://doi.org/10.4103/aja.aja_46_19. DOI: https://doi.org/10.4103/aja.aja_46_19

Liu J, Dong B, Qu W, Wang J, Xu Y, Yu S, et al. Using clinical parameters to predict prostate cancer and reduce the unnecessary biopsy among patients with PSA in the gray zone. Sci Rep. 2020 Mar;10:5157. Available from: https://doi.org/10.1038/s41598-020-62015-w. DOI: https://doi.org/10.1038/s41598-020-62015-w

Park JY, Yoon S, Park MS, Choi H, Bae JH, Moon DG, et al. Development and External Validation of the Korean Prostate Cancer Risk Calculator for High-Grade Prostate Cancer: Comparison with Two Western Risk Calculators in an Asian Cohort. PLOS ONE. 2017 Jan;12(1):0168917. Available from: https://doi.org/10.1371/journal.pone.0168917. DOI: https://doi.org/10.1371/journal.pone.0168917

Yoo S, Gujrathi I, Haider MA, Khalvati F. Prostate Cancer Detection using Deep Convolutional Neural Networks. Sci Rep. 2019 Dec;9:19518. Available from: https://doi.org/10.1038/s41598-019-55972-4. DOI: https://doi.org/10.1038/s41598-019-55972-4

Chen Y, Xu C, Zhang Z, Zhu A, Xu X, Pan J, et al. Prostate cancer identification via photoacoustic spectroscopy and machine learning. Photoacoustics. 2021 Sep;23:100280. Available from: https://doi.org/10.1016/j.pacs.2021.100280. DOI: https://doi.org/10.1016/j.pacs.2021.100280

Publicado

2024-11-19

Cómo citar

de Araujo, W. B. D., Santana, E. E. C., Silva, N. P., Sousa Junior, C. M., Moura, G. L., dos Santos, J. A. L. M., … Silva, F. C. B. R. (2024). Red neuronal artificial aplicada al diagnóstico del cáncer de próstata. Journal of Health Informatics, 16(Especial). https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1371

Artículos similares

1 2 3 4 5 6 7 8 9 10 > >> 

También puede {advancedSearchLink} para este artículo.