CovNet-UFCSPA: ayudando en el diagnóstico de neumonía por coronavirus

Autores/as

  • Nouara Cândida Xavier Federal University of Health Sciences of Porto Alegre
  • Rochelle Lykawka Hospital de Clínicas de Porto Alegre
  • Alexandre Bacelar Hospital de Clínicas de Porto Alegre
  • Tiago Severo Garcia Hospital de Clínicas de Porto Alegre
  • Thatiane Alves Pianoschi Alva Federal University of Health Sciences of Porto Alegre
  • Mirko Salomón Alva Sánchez Federal University of Health Sciences of Porto Alegre
  • Carla Diniz Lopes Becker Federal University of Health Sciences of Porto Alegre

DOI:

https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1377

Palabras clave:

COVID-19, Aprendizaje Profundo, CNN

Resumen

Objetivo: Este estudio presenta la arquitectura CovNet-UFCSPA, que incorpora datos de preprocesamiento de imágenes clínicas (radiografías) y algoritmos de aprendizaje profundo. Método: Se utilizaron un total de 24,235 imágenes para el entrenamiento, validación y prueba del modelo, identificando áreas en las radiografías que influyen en la decisión del modelo. Resultado: La arquitectura alcanzó un recall del 99% en la clasificación de radiografías de pacientes del Hospital de Clínicas de Porto Alegre (HCPA). La aplicación de la técnica CLAHE mejoró la región de interés en las radiografías, reduciendo la tasa de falsos negativos de 187 a 9. Conclusión: En comparación con las arquitecturas Resnet50 V2 e Inception V3, CovNet-UFCSPA demostró superioridad en las tasas de falsos negativos, verdaderos positivos y recall.

Biografía del autor/a

Nouara Cândida Xavier, Federal University of Health Sciences of Porto Alegre

M.Sc., Federal University of Health Sciences of Porto Alegre – UFCSPA, Porto Alegre (RS), Brazil.

Rochelle Lykawka, Hospital de Clínicas de Porto Alegre

M.Sc., Hospital de Clínicas de Porto Alegre, Porto Alegre (RS), Brazil, Brazil.

Alexandre Bacelar, Hospital de Clínicas de Porto Alegre

M.Sc., Hospital de Clínicas de Porto Alegre, Porto Alegre (RS), Brazil, Brazil.

Tiago Severo Garcia, Hospital de Clínicas de Porto Alegre

Ph.D, Hospital de Clínicas de Porto Alegre, Porto Alegre (RS), Brazil, Brazil.

Thatiane Alves Pianoschi Alva, Federal University of Health Sciences of Porto Alegre

 Ph.D., Federal University of Health Sciences of Porto Alegre – UFCSPA, DECESA, Porto Alegre (RS), Brazil.

Mirko Salomón Alva Sánchez, Federal University of Health Sciences of Porto Alegre

Ph.D., Federal University of Health Sciences of Porto Alegre – UFCSPA, DECESA, Porto Alegre (RS), Brazil.

Carla Diniz Lopes Becker, Federal University of Health Sciences of Porto Alegre

Ph.D., Federal University of Health Sciences of Porto Alegre – UFCSPA, DECESA, Porto Alegre (RS), Brazil.

Citas

Gong J, Dong H, Xia SQ, Huang YZ, Wang D, Zhao Y, Liu W, Tu S, Zhang M, Wang Q, et al. Correlation analysis between disease severity and inflammation-related parameters in patients with COVID-19 pneumonia. MedRxiv. 2020. DOI: https://doi.org/10.1101/2020.02.25.20025643

Udugama B, Kadhiresan P, Kozlowski HN, Malekjahani A, Osborne M, Li VYC, Chen H, Mubareka S, Gubbay JB, Chan WCW. Diagnosing COVID-19: the disease and tools for detection. ACS Nano. 2020;14(4):3822-3835. DOI: https://doi.org/10.1021/acsnano.0c02624

DATASUS. Equipments of Imaging Used in Health - E - DATASUS. DATASUS. Available at: http://tabnet.datasus.gov.br/tabdata/LivroIDB/2edrev/e18.pdf

Chassagnon G, Vakalopoulou M, Paragios N, Revel MP. Artificial intelligence applications for thoracic imaging. Eur J Radiol. 2020;123:108774. DOI: https://doi.org/10.1016/j.ejrad.2019.108774

Nahid AA, Sikder N, Bairagi AK, Razzaque M, Masud M, Kouzani AZ, Mahmud MA, et al. A novel method to identify pneumonia through analyzing chest radiographs employing a multichannel convolutional neural network. Sensors. 2020;20(12):3482. DOI: https://doi.org/10.3390/s20123482

Rajaraman S, Antani S. Training deep learning algorithms with weakly labeled pneumonia chest X-ray data for COVID-19 detection. medRxiv. 2020. DOI: https://doi.org/10.1101/2020.05.04.20090803

Ozturk T, Talo M, Yildirim EA, Baloglu UB, Yildirim O, Acharya UR. Automated detection of COVID-19 cases using deep neural networks with X-ray images. Comput Biol Med. 2020;121:103792. DOI: https://doi.org/10.1016/j.compbiomed.2020.103792

Mittal A, Singh K, Misra DP. Detecting COVID-19 using ResNet deep learning model with X-ray images. Biocybernetics and Biomedical Engineering. 2020.

Takara, K., Nishiyama, Y., & Sone, S. (2022). Artificial Intelligence System for Chest X-ray Diagnosis of COVID-19: Development and Validation Study. Journal of Medical Internet Research, 24(1), e30527.

Nouara Cândida Xavier, Tathiane Alves Pianoschi Alva, Carla Diniz Lopes Becker. Ciências da Saúde: uma abordagem holística. Editora Conhecimento Livre; 2022. Cap 5.

Gonzalez, Rafael C., and Richard E. Woods. Processamento de imagens digitais. Editora Blucher, 2000.

Chollet F. Deep learning with Python. Simon and Schuster; 2021.

Yamashita R, Nishio M, Do RK, Togashi K. Convolutional neural networks: an overview and application in radiology. Insights into Imaging. 2018;9(4):611-629. DOI: https://doi.org/10.1007/s13244-018-0639-9

O'Shea K, Nash R. An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458. 2015.

Albawi S, Mohammed TA, Al-Zawi S. Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET). IEEE; 2017. pp. 1-6. DOI: https://doi.org/10.1109/ICEngTechnol.2017.8308186

scikit. Sklearn.utils.class_weight.compute_class_weight. [Online]. Available in: https://scikit-learn.org/stable/modules/generated/sklearn.utils.class_weight.compute_class_weight.html. Access at: 2024.

Cross-validation: evaluating estimator performance. [Online]. Available in: https://scikit-learn.org/stable/modules/cross_validation.html. Access at: 2024

Publicado

2024-11-19

Cómo citar

Xavier, N. C., Lykawka, R., Bacelar, A., Garcia, T. S., Alva, T. A. P., Sánchez, M. S. A., & Becker, C. D. L. (2024). CovNet-UFCSPA: ayudando en el diagnóstico de neumonía por coronavirus. Journal of Health Informatics, 16(Especial). https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1377

Artículos similares

1 2 3 4 5 6 7 8 9 > >> 

También puede {advancedSearchLink} para este artículo.

Artículos más leídos del mismo autor/a