Avaliação do uso de transfer learning para detecção de tumores cerebrais em imagens médicas

Autores

  • André Gonçalves Jardim UFCSPA
  • Carla Diniz Lopes Becker UFCSPA
  • Thatiane Alves Pianoski UFCSPA
  • Viviane Rodrigues Botelho UFCSPA

DOI:

https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1302

Palavras-chave:

Transfer Learning, Rede Neural Convolucional, Tumor Cerebral

Resumo

Objetivo: Com aumento da viabilidade da aplicação das neurais convolucionais (CNNs) foi objetivado avaliar o uso de desta tecnologia para a detecção de tumores cerebrais em imagens de ressonância magnética computadorizada Método: Foram desenvolvidos dois modelos distintos de CNNs, uma com o uso de Transfer learning e outra sem, para classificar a ocorrência de tumor cerebral. Resultados: foi obtido, com o modelo sem o uso de transfer learning uma acurácia de 99,67%, com sensibilidade de 100% e especificidade de 99,34%; já com o modelo que usou transfer learning, obteve uma acurácia de 98%, com sensibilidade de 98,32% e especificidade de 97,69%. Conclusão: Este estudo destaca a eficácia das CNNs na detecção de tumores cerebrais, sugerindo o uso de sistemas inteligentes como ferramentas de auxílio.

Biografia do Autor

André Gonçalves Jardim, UFCSPA

Master’s Student, Federal University of Health Sciences of Porto Alegre – UFCSPA, Porto Alegre (RS), Brazil.

Carla Diniz Lopes Becker, UFCSPA

Ph.D., Federal University of Health Sciences of Porto Alegre – UFCSPA, DECESA, Porto Alegre (RS), Brazil.

Thatiane Alves Pianoski, UFCSPA

Ph.D., Federal University of Health Sciences of Porto Alegre – UFCSPA, DECESA, Porto Alegre (RS), Brazil.

Viviane Rodrigues Botelho, UFCSPA

Ph.D., Federal University of Health Sciences of Porto Alegre – UFCSPA, DECESA, Porto Alegre (RS), Brazil.

Referências

Rethemiotaki I. Brain tumour detection from magnetic resonance imaging using convolutional neural networks. Contemp Oncol [Internet]. 2023 [cited 2024 Apr 21];27(4):230. Available from: /pmc/articles/PMC10883197/ DOI: https://doi.org/10.5114/wo.2023.135320

Fritz A, Percy C, Jack A. International Classification of Diseases for Oncology. Third. Vol. 1. Switzerland: World Health Organization; 2000. 0–222 p.

Tandel GS, Biswas M, Kakde OG, Tiwari A, Suri HS, Turk M, et al. A review on a deep learning perspective in brain cancer classification. Cancers (Basel) [Internet]. 2019 Jan 18 [cited 2021 Dec 12];11(1):111. Available from: https://www.mdpi.com/2072-6694/11/1/111/htm DOI: https://doi.org/10.3390/cancers11010111

Kang J, Ullah Z, Gwak J. Mri-based brain tumor classification using ensemble of deep features and machine learning classifiers. Sensors [Internet]. 2021 Mar 22 [cited 2021 Dec 12];21(6):1–21. Available from: https://www.mdpi.com/1424-8220/21/6/2222/htm

Patel AP, Fisher JL, Nichols E, Abd-Allah F, Abdela J, Abdelalim A, et al. Global, regional, and national burden of brain and other CNS cancer, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol [Internet]. 2019 Apr 1 [cited 2024 Apr 22];18(4):376–93. Available from: https://pubmed.ncbi.nlm.nih.gov/30797715/

Naseer A, Yasir T, Azhar A, Shakeel T, Zafar K. Computer-Aided Brain Tumor Diagnosis: Performance Evaluation of Deep Learner CNN Using Augmented Brain MRI. Int J Biomed Imaging. 2021;2021.

Fernandes SL, Tanik UJ, Rajinikanth V, Karthik KA. A reliable framework for accurate brain image examination and treatment planning based on early diagnosis support for clinicians. Neural Comput Appl [Internet]. 2020 Oct 1 [cited 2024 Apr 22];32(20):15897–908. Available from: https://link.springer.com/article/10.1007/s00521-019-04369-5 DOI: https://doi.org/10.1007/s00521-019-04369-5

Naseer A, Yasir T, Azhar A, Shakeel T, Zafar K. Computer-Aided Brain Tumor Diagnosis: Performance Evaluation of Deep Learner CNN Using Augmented Brain MRI. Int J Biomed Imaging. 2021;2021. DOI: https://doi.org/10.1155/2021/5513500

Naseer A, Zafar K. Comparative Analysis of Raw Images and Meta Feature based Urdu OCR using CNN and LSTM. International Journal of Advanced Computer Science and Applications. 2018;9(1):419–24. DOI: https://doi.org/10.14569/IJACSA.2018.090157

Naseer A, Zafar K. Meta features-based scale invariant OCR decision making using LSTM-RNN. Comput Math Organ Theory [Internet]. 2019 Jun 1 [cited 2024 Apr 22];25(2):165–83. Available from: https://link.springer.com/article/10.1007/s10588-018-9265-9 DOI: https://doi.org/10.1007/s10588-018-9265-9

Papageorgiou V. Brain tumor detection based on features extracted and classified using a low-complexity neural network. Traitement du Signal. 2021 Jun 1;38(3):547–54.

Papageorgiou EI, Spyridonos PP, Glotsos DT, Stylios CD, Ravazoula P, Nikiforidis GN, et al. Brain tumor characterization using the soft computing technique of fuzzy cognitive maps. Applied Soft Computing Journal. 2008 Jan 1;8(1):820–8. DOI: https://doi.org/10.1016/j.asoc.2007.06.006

Deepak S, Ameer PM. Brain tumor classification using deep CNN features via transfer learning. Comput Biol Med [Internet]. 2019 Aug 1 [cited 2024 Apr 28];111. Available from: https://pubmed.ncbi.nlm.nih.gov/31279167/ DOI: https://doi.org/10.1016/j.compbiomed.2019.103345

Wu M, Liu Q, Yan C, Sen G. Multi-Classification of Brain Tumors on Magnetic Resonance Images Using an Ensemble of Pre-Trained Convolutional Neural Networks. Curr Med Imaging [Internet]. 2022 Apr 18 [cited 2024 Apr 28];19(1):65–76. Available from: https://pubmed.ncbi.nlm.nih.gov/35430973/ DOI: https://doi.org/10.2174/1573405618666220415122843

Swati ZNK, Zhao Q, Kabir M, Ali F, Ali Z, Ahmed S, et al. Brain tumor classification for MR images using transfer learning and fine-tuning. Comput Med Imaging Graph [Internet]. 2019 Jul 1 [cited 2024 Apr 28];75:34–46. Available from: https://pubmed.ncbi.nlm.nih.gov/31150950/ DOI: https://doi.org/10.1016/j.compmedimag.2019.05.001

Kang J, Ullah Z, Gwak J. Mri-based brain tumor classification using ensemble of deep features and machine learning classifiers. Sensors. 2021 Mar 22;21(6):1–21. DOI: https://doi.org/10.3390/s21062222

Br35H :: Detecção de tumor cerebral 2020 | Kaggle [Internet]. [cited 2021 Dec 12]. Available from: https://www.kaggle.com/ahmedhamada0/brain-tumor-detection

Papageorgiou V. Brain tumor detection based on features extracted and classified using a low-complexity neural network. Traitement du Signal. 2021 Jun 1;38(3):547–54. DOI: https://doi.org/10.18280/ts.380302

Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization. Int J Comput Vis [Internet]. 2016 Oct 7 [cited 2024 May 27];128(2):336–59. Available from: http://arxiv.org/abs/1610.02391 DOI: https://doi.org/10.1007/s11263-019-01228-7

Downloads

Publicado

19-11-2024

Como Citar

Jardim, A. G., Becker, C. D. L., Pianoski, T. A., & Botelho, V. R. (2024). Avaliação do uso de transfer learning para detecção de tumores cerebrais em imagens médicas. Journal of Health Informatics, 16(Especial). https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1302

Artigos Semelhantes

<< < 4 5 6 7 8 9 10 11 12 13 > >> 

Você também pode iniciar uma pesquisa avançada por similaridade para este artigo.

Artigos mais lidos pelo mesmo(s) autor(es)