Identificação da doença de Alzheimer através da fala: uma abordagem multilíngue

Autores

  • Guilherme Bernieri Military Institute of Engineering
  • Julio Cesar Duarte Military Institute of Engineering

DOI:

https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1273

Palavras-chave:

Aprendizado de Máquina, Análise Automática da Fala, Doença de Alzheimer

Resumo

A doença de Alzheimer, principal forma de demência entre os idosos no mundo, tem significativas repercussões sociais e econômicas. É caracterizada pela perda de memória e mudanças na linguagem, cognição e emoções, afetando irreversivelmente os neurônios. O diagnóstico precoce é fundamental, mas desafiador, pois depende de avaliações médicas, testes e exames complexos que, muitas vezes, são inacessíveis para indivíduos de baixa renda. Nesse contexto, técnicas computacionais, como o aprendizado de máquina (AM), surgem como alternativas para a detecção da doença. Este estudo apresenta uma abordagem multilíngue baseada em AM, focando nas características paralinguísticas e emocionais da fala como biomarcadores para a identificação do Alzheimer. Os experimentos produziram resultados com acurácia de 81% para o inglês e 87,50% para o português. Além disso, a integração dessa metodologia com o modelo de Haider, Fuente, e Luz(1) resultou em uma acurácia média de 81,70%, superando os resultados originais dos autores.

Biografias Autor

Guilherme Bernieri, Military Institute of Engineering

Military Institute of Engineering – IME, Rio de Janeiro (RJ), Brazil.

Julio Cesar Duarte, Military Institute of Engineering

Military Institute of Engineering – IME, Rio de Janeiro (RJ), Brazil.

Referências

Haider F, de la Fuente S, Luz S. An Assessment of Paralinguistic Acoustic Features for Detection of Alzheimer’s Dementia in Spontaneous Speech. IEEE Journal of Selected Topics in Signal Processing. 2020 Feb;14:272-281. DOI: https://doi.org/10.1109/JSTSP.2019.2955022

World Health Organization. Ageing. World Health Organization (WHO) [Internet]. 2024 [cited 2024 Jan 15]; [about 1 p.]. Available from: https://www.who.int/health-topics/ageing.

Long S, Benoist C, Weidner W. World Alzheimer Report 2023: Reducing dementia risk: never too early, never too late. London, England: Alzheimer’s Disease International (ADI); 2023.

Campbell EL, Mesía RY, Docío-Fernández L, García-Mateo C. Paralinguistic and linguistic fluency features for Alzheimer’s disease detection. Computer Speech & Language. 2021. Jul;68:101198. DOI: https://doi.org/10.1016/j.csl.2021.101198

de la Fuente Garcia S, Haider F, Luz S. Cross-corpus Feature Learning between Spontaneous Monologue and Dialogue for Automatic Classification of Alzheimer’s Dementia Speech. 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). 2020 Jul 20-24; Montreal, Canada. p. 5851-5855. DOI: https://doi.org/10.1109/EMBC44109.2020.9176305

Bernieri G, Duarte JC. Identifying Alzheimer’s Disease Through Speech Using Emotion Recognition. Journal of Health Informatics. 2023 Jul 20;15:1-14. DOI: https://doi.org/10.59681/2175-4411.v15.iEspecial.2023.1093

Russell JA, Mehrabian A. Evidence for a three-factor theory of emotions. Journal of Research in Personality. 1977 Sep;11:273–294. DOI: https://doi.org/10.1016/0092-6566(77)90037-X

Cai H, Huang X, Liu Z, Liao W, Dai H, Wu Z, et al. Multimodal Approaches for Alzheimer’s Detection Using Patients’ Speech and Transcript. Lecture Notes in Computer Science. 2023 Sep 13;395–406. DOI: https://doi.org/10.1007/978-3-031-43075-6_34

Becker JT, Boiler F, Lopez OL, Saxton J, McGonigle KL. The natural history of Alzheimer's disease: Description of study cohort and accuracy of diagnosis. Archives of Neurology. 1994 Jun; 51 (6): 585-594. DOI: https://doi.org/10.1001/archneur.1994.00540180063015

Burkhardt F, Paeschke A, Rolfes M, Sendlmeier WF, Weiss B. A database of German emotional speech. In: Proceedings of Interspeech 2005; 2005 Sep 04-08; Lisbon, Portugal. p. 1517-1520. DOI: https://doi.org/10.21437/Interspeech.2005-446

Aluísio S, Cunha A, Scarton C. Evaluating Progression of Alzheimer’s Disease by Regression and Classification Methods in a Narrative Language Test in Portuguese. Computational Processing of the Portuguese Language. 2016;109–114. DOI: https://doi.org/10.1007/978-3-319-41552-9_10

Husein Z. Malaya, Speech-Toolkit library. Version 1.2.7 [software]. 2020 [cited 2024 Jan 15]. Available from: https://github.com/huseinzol05/malaya-speech.

Buechel S, Hahn U. Emotion Analysis as a Regression Problem – Dimensional Models and Their Implications on Emotion Representation and Metrical Evaluation. European Conference on Artificial Intelligence 2016; 2016. p. 1114-1122.

Wagner J, Triantafyllopoulos A, Wierstorf H, Schmitt M, Burkhardt F, Eyben F, et al. Dawn of the transformer era in speech emotion recognition: Closing the valence gap. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2022; 1–13.

Shreffler J, Huecker MR. Diagnostic Testing Accuracy: Sensitivity, Specificity, Predictive Values and Likelihood Ratios. StatPearls. 2023.

Publicado

2024-11-19

Como Citar

Bernieri, G., & Duarte, J. C. (2024). Identificação da doença de Alzheimer através da fala: uma abordagem multilíngue. Journal of Health Informatics, 16(Especial). https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1273

Artigos Similares

<< < 1 2 3 4 5 6 7 8 9 10 > >> 

Também poderá iniciar uma pesquisa avançada de similaridade para este artigo.