Aplicação de Deep Learning para Diagnóstico de Pneumonia Causada por COVID -19 a partir de Imagens de Raio X

Autores

  • Giordano Brunno Wagner Trombetta SBIS
  • William da Rosa Fröhlich
  • Sandro José Rigo
  • Clarissa Almeida Rodrigues

Palavras-chave:

COVID-19, Deep Learning, Diagnóstico por Imagem

Resumo

Objetivos: COVID-19 é uma doença com alta taxa de transmissibilidade e, em casos mais graves, pode desenvolver quadros de pneumonia, sendo necessária a internação médica. Estudos iniciais apontaram casos de pacientes que apresentam anormalidades nas radiografias de tórax. Este trabalho tem como objetivo desenvolver um algoritmo que possa realizar o diagnóstico com base em imagens de Raio-X. Métodos: A metodologia seguida consiste em revisão do estado da arte com relação à temática de redes neurais profundas aplicadas à detecção de imagem e desenvolvimento de um algoritmo que realize o diagnóstico por imagem. Resultados: Os resultados obtidos para identificação do quadro de síndrome respiratória aguda grave foram bastante promissores, apresentando acurácia de aproximadamente 96%. Conclusão: O estudo realizado comprovou a hipótese elaborada inicialmente de aplicação de Deep Learning para diagnóstico, sendo assim, os estudos e o desenvolvimento do modelo serão aprimorados, adicionando mais comparativos.

Publicado

2021-03-15

Como Citar

Trombetta, G. B. W., Fröhlich, W. da R., Rigo, S. J., & Rodrigues, C. A. (2021). Aplicação de Deep Learning para Diagnóstico de Pneumonia Causada por COVID -19 a partir de Imagens de Raio X. Journal of Health Informatics, 12. Obtido de https://jhi.sbis.org.br/index.php/jhi-sbis/article/view/828

Artigos Similares

<< < 24 25 26 27 28 29 30 31 32 33 > >> 

Também poderá iniciar uma pesquisa avançada de similaridade para este artigo.