Evaluation of Stacking on Biomedical Data
Palavras-chave:
Artificial Intelligence, Classification, EnsemblesResumo
Objectives: Stacking is a well-known ensemble technique, but some of its aspects still need to be explored, e.g., there are few recommendations on which and how many algorithms should be used at level-0 or even which algorithm should be used to compose the level-1 meta-classifier. The literature indicates the meta-algorithm at level-1 should be simple, and Naive Bayes has been typically used in these studies. Methods: In this work, we have analyzed stacking on biomedical datasets, using three different paradigms of machine learning algorithms to compose the meta-classifier. Results: The experiments indicate simple meta-algorithms do not provide good results. Conclusion: the meta-classifier must have a degree of complexity to provide a nice performance.Downloads
Publicado
Como Citar
Edição
Seção
Licença
A submissão de um artigo ao Journal of Health Informatics é entendida como exclusiva e que não está sendo considerada para publicação em outra revista. A permissão dos autores para a publicação de seu artigo no J. Health Inform. implica na exclusiva autorização concedida aos editores para incluí-lo na revista. Ao submeter um artigo, ao autor será solicitada a permissão eletrônica de um Termo de Transferência de Direitos Autorais. Uma mensagem eletrônica será enviada ao autor correspondente confirmando o recibo do manuscrito e o aceite da Declaração de Direito Autoral.