Análise de sinais e sintomas da infecção pelo vírus SARS-CoV-2

Autores

  • Felipe Cassemiro Ulrichsen State University of Rio de Janeiro
  • Alexandre Costa Sena State University of Rio de Janeiro
  • Luís Cristóvão Porto State University of Rio de Janeiro
  • Karla Figueiredo State University of Rio de Janeiro

DOI:

https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1339

Palavras-chave:

COVID-19, SARS-CoV-2, Aprendizado de Máquina

Resumo

Objetivo: Desenvolver metodologia de Mineração de Dados e Aprendizado de Máquina para diagnóstico de COVID-19. Método: Criar modelos de diagnóstico, avaliar diferenças nos sintomas entre ondas pandêmicas. Resultados: Diagnosticar infecção sintomática pelo SARS-CoV-2. Conclusão: Destacar a eficácia da metodologia na gestão pandêmica.

Biografia do Autor

Felipe Cassemiro Ulrichsen, State University of Rio de Janeiro

PhD student, Matematical and Statistics Institute, State University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil.

Alexandre Costa Sena, State University of Rio de Janeiro

PhD/Associate Professor, Matematical and Statistics Institute, State University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil.

Luís Cristóvão Porto, State University of Rio de Janeiro

PhD/Associate Professor, Piquet Carneiro University Polyclinic (PPC), State University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil

Karla Figueiredo, State University of Rio de Janeiro

PhD/Associate Professor, Matematical and Statistics Institute, State University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil.

Referências

Andersen KG, Rambaut A, Lipkin WI. The proximal origin of SARS-CoV-2. Nature Medicine. 2020; 26:450-452.

Yin C. Genotyping coronavirus SARS-CoV-2: methods and implications. ZGenomics. 2020; 112(5):3588–3596.

Ming-Syan C, Jiawei H, Yu PS. Data mining: an overview from a database perspective. IEEE Transactions on Knowledge and Data Engineering. 1996; 8(6):866-883.

Addis TR. Towards an ”expert” diagnostic system. ICL Technical Journal. 1956; 1:79-105.

Fayyoumi E, Idwan S, AboShindi H. Machine Learning and Statistical Modelling for Prediction of Novel COVID-19 Patients Case Study: Jordan. (IJACSA) International Journal of Advanced Computer Science and Applications. 2020; 11:122–126.

Elliott J, Whitaker M, Bodinier B, et al. Predictive symptoms for COVID-19 in the community: REACT-1 study of over 1 million people. PLoS Med. 2021; 18(9).

Canas LS, Sudre CH, Pujol JC, et al. Early detection of COVID-19 in the UK using self-reported symptoms: a large-scale, prospective, epidemiological surveillance study. Lancet Digit Health. 2021;

Menni C, Valdes AM, Freidin MB, et al. Real-time tracking of self-reported symptoms to predict potential COVID-19. Nature Medicine. 2020; 26:1037–1040.

Breiman L. Random Forests. Machine Learning. 2001; 45(1):5-32.

Breiman L. Bagging predictors. Machine Learning. 1996; 24:123-140.

Haykin, S. Neural Networks and Learning Machines. Third Edition, Pearson Education, Inc., McMaster University, Hamilton, 2009

Brant R. Digesting logistic regression results. The American Statistician. 1996; 50(2):117-119.

Lundberg SM, Lee SI. A Unified Approach to Interpreting Model Predictions. Advances in Neural Information Processing Systems. 2017.

Downloads

Publicado

19-11-2024

Como Citar

Ulrichsen, F. C., Sena, A. C., Porto, L. C., & Figueiredo, K. (2024). Análise de sinais e sintomas da infecção pelo vírus SARS-CoV-2. Journal of Health Informatics, 16(Especial). https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1339

Artigos Semelhantes

<< < 1 2 3 4 5 6 7 8 > >> 

Você também pode iniciar uma pesquisa avançada por similaridade para este artigo.

Artigos mais lidos pelo mesmo(s) autor(es)