Classificação de padrões de esclerodermia utilizando deep learning

Autores

  • Fabio Cardoso Pontifícia Universidade Católica do Rio de Janeiro
  • Verônica Silva Vilela Universidade do Estado do Rio de Janeiro
  • Ronaldo Carvalho Araújo Filho Universidade do Estado do Rio de Janeiro
  • Agnaldo Lopes Universidade do Estado do Rio de Janeiro
  • Roberto Mogami Universidade do Estado do Rio de Janeiro
  • Karla Figueiredo Universidade do Estado do Rio de Janeiro

DOI:

https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1300

Palavras-chave:

Esclerodermia, Classificação, Deep Learning

Resumo

Objetivo: A esclerodermia é uma doença que não é conhecida a causa e tem como consequência o enrijecimento da pele e dos órgãos internos. Diante disso, este trabalho tem como objetivo desenvolver modelos de deep learning para auxiliar os médicos na avaliação da progressão e mortalidade da doença. Método: Foram desenvolvidos modelos de classificação de padrões PIU e PINE com a arquitetura MobileNetV2, VGG16, ResNet50 e EfficientNet para imagens de tomografia computadorizada de pacientes com esclerodermia. Resultados: Todos os modelos alcançaram acurácia de 100% nos conjuntos de treino, validação e teste e, portanto, foi possível realizar a diferenciação dos padrões apresentados nas imagens de tomografia computadorizada de pacientes que estiveram no Hospital Pedro Ernesto durante o período de 2017 e 2022. Conclusão: Dentre os modelos avaliados, o melhor é a MobileNetV2 devido possuir a menor quantidade de parâmetros entre todas as arquiteturas avaliadas neste trabalho.

Biografia do Autor

Fabio Cardoso, Pontifícia Universidade Católica do Rio de Janeiro

Aluno de mestrado, Engenharia Elétrica, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro (RJ), Brasil.

Verônica Silva Vilela, Universidade do Estado do Rio de Janeiro

PhD/Professor, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro (RJ), Brasil.

Ronaldo Carvalho Araújo Filho, Universidade do Estado do Rio de Janeiro

MSc/Médico Radiologista, Hospital Pedro Ernesto, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro (RJ), Brasil.

Agnaldo Lopes, Universidade do Estado do Rio de Janeiro

PhD/Professor, Hospital Pedro Ernesto, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro (RJ), Brasil.

Roberto Mogami, Universidade do Estado do Rio de Janeiro

PhD/Professor, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro (RJ), Brasil.

Karla Figueiredo, Universidade do Estado do Rio de Janeiro

PhD/Professor, Ciência da Computação, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro (RJ), Brasil.

Referências

Sociedade Brasileira de Reumatologia (2017, October 27). Esclerodermia - Sociedade Brasileira de Reumatologia.

Leite, C, Maia, A. "Sintomas de doença e adaptação psicológica em pacientes brasileiros com esclerodermia". Revista Brasileira de Reumatologia 2013; 53(5):405–411. DOI: https://doi.org/10.1590/S0482-50042013000500007

Steen, V, Oddis, C, Conte, C, Janoski, J, Casterline, G, Medsger, T. "Incidence of systemic sclerosis in Allegheny County, Pennsylvania. A twenty-year study of hospital-diagnosed cases, 1963-1982". Arthritis Rheum 1997; 40(3):441–445. DOI: https://doi.org/10.1002/art.1780400309

Frank van den Hoogen, Dinesh Khanna, Jaap Fransen, Sindhu R Johnson, Murray Baron, Alan Tyndall, Marco Matucci-Cerinic, Raymond P Naden, Thomas A Medsger, J, Patricia E Carreira, Gabriela Riemekasten, Philip J Clements, Christopher P Denton, Oliver Distler, Yannick Allanore, Daniel E Furst, Armando Gabrielli, Maureen D Mayes, Jacob M van Laar, James R Seibold, Laszlo Czirjak, Virginia D Steen, Murat Inanc, Otylia Kowal-Bielecka, Ulf Muller-Ladner, Gabriele Valentini, Douglas J Veale, Madelon C Vonk, Ulrich A Walker, Lorinda Chung, David H Collier, Mary Ellen Csuka, Barri J Fessler, Serena Guiducci, Ariane Herrick, Vivien M Hsu, Sergio Jimenez, Bashar Kahaleh, Peter A Merkel, Stanislav Sierakowski, Richard M Silver, Robert W Simms, John Varga, Janet E Pope. "2013 classification criteria for systemic sclerosis: an American college of rheumatology/European league against rheumatism collaborative initiative". Annals of the Rheumatic Diseases 2013; 72(11):1747–1755. DOI: https://doi.org/10.1136/annrheumdis-2013-204424

Desai, S, Veeraraghavan, S, Hansell, D, Nikolakopolou, A, Goh, N, Nicholson, A, Colby, T, Denton, C, Black, C, Bois, R, Wells, A. "CT Features of Lung Disease in Patients with Systemic Sclerosis: Comparison with Idiopathic Pulmonary Fibrosis and Nonspecific Interstitial Pneumonia". Radiology 2004; 232(2):560-567. DOI: https://doi.org/10.1148/radiol.2322031223

Jonathan G. Goldin, David A. Lynch, Diane C. Strollo, Robert D. Suh, Dean E. Schraufnagel, Philip J. Clements, Robert M. Elashoff, Daniel E. Furst, Sarinnapha Vasunilashorn, Michael F. McNitt-Gray, Mathew S. Brown, Michael D. Roth, Donald P. Tashkin. "High-Resolution CT Scan Findings in Patients With Symptomatic Scleroderma-Related Interstitial Lung Disease". Chest 2008; 134(2):358–367. DOI: https://doi.org/10.1378/chest.07-2444

Goodfellow, I, Bengio, Y, Courville, A. Deep Learning. MIT Press; 2016.

Alexander Selvikvåg Lundervold, Arvid Lundervold. "An overview of deep learning in medical imaging focusing on MRI". Zeitschrift für Medizinische Physik 2019; 29(2):102-127 DOI: https://doi.org/10.1016/j.zemedi.2018.11.002

Montagnon, A. "Deep learning workflow in radiology: a primer". Insights into Imaging 2020; 11(1):22. DOI: https://doi.org/10.1186/s13244-019-0832-5

Prastyo Eko Susanto, Arrie Kurniawardhan, Dhomas Hatta Fudholi, Ridho Rahmadi. "A Mobile Deep Learning Model on Covid-19 CT-Scan Classification". International Journal of Artificial Intelligence Research 2022; 6(2). DOI: https://doi.org/10.29099/ijair.v6i1.257

TÜRK V, ÇATAL REİS H, KAYA S. Derin öğrenme mimarilerini kullanarak göğüs BT görüntülerinden otomatik Covid-19 tahmini. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi. Gumushane University Journal of Science and Technology Institute; 2022. Disponível em: http://doi.org/10.17714/gumusfenbil.1002738 DOI: https://doi.org/10.17714/gumusfenbil.1002738

Almeida, A, Bilbao, A, Ruby, L, Rominger, M, López-De-Ipiña, D, Dahl, J, ElKaffas, A, Sanabria, SLung ultrasound for point-of-care COVID-19 pneumonia stratification: computer-aided diagnostics in a smartphone. First experiences classifying semiology from public datasets. In 2020 IEEE International Ultrasonics Symposium (IUS) 2020 (pp. 1-4). DOI: https://doi.org/10.1109/IUS46767.2020.9251716

Torrey L, Shavlik J. Transfer Learning. Handbook of Research on Machine Learning Applications and Trends. IGI Global; 2010. p. 242–64. Disponível em: http://doi.org/10.4018/978-1-60566-766-9.ch011 DOI: https://doi.org/10.4018/978-1-60566-766-9.ch011

Yu X, Wang J, Hong QQ, Teku R, Wang SH, Zhang YD. Transfer learning for medical images analyses: A survey. Vol. 489, Neurocomputing. Elsevier BV; 2022. p. 230–54. Disponível em: http://doi.org/10.1016/j.neucom.2021.08.159 DOI: https://doi.org/10.1016/j.neucom.2021.08.159

Zhang X, Zhou J, Sun W, Kumar Jha S. A Lightweight CNN Based on Transfer Learning for COVID-19 Diagnosis. Vol. 72, Computers, Materials & Continua. Computers, Materials and Continua (Tech Science Press); 2022. p. 1123–37. Disponível em: http://doi.org/10.32604/cmc.2022.02458 DOI: https://doi.org/10.32604/cmc.2022.024589

Hilmizen N, Bustamam A, Sarwinda D. The Multimodal Deep Learning for Diagnosing COVID-19 Pneumonia from Chest CT-Scan and X-Ray Images. 2020 3rd International Seminar on Research of Information Technology and Intelligent Systems (ISRITI). IEEE; 2020. Disponível em: http://doi.org/10.1109/ISRITI51436.2020.9315478 DOI: https://doi.org/10.1109/ISRITI51436.2020.9315478

Martins JVG, Gregório MP, Baffa M de FO, Coelho AM. Classificação da COVID-19 em Radiografias do Tórax Utilizando Redes Neurais Profundas e Padrões Binários Locais. J Health Inform. 15º de março de 2021 [citado 29º de abril de 2024];12. Disponível em: https://jhi.sbis.org.br/index.php/jhi-sbis/article/view/843

Trombetta GBW, Fröhlich W da R, Rigo SJ, Rodrigues CA. Aplicação de Deep Learning para Diagnóstico de Pneumonia Causada por COVID -19 a partir de Imagens de Raio X. J Health Inform. 15º de março de 2021 [citado 29º de abril de 2024];12. Disponível em: https://jhi.sbis.org.br/index.php/jhi-sbis/article/view/828

Mikołajczyk, A, Grochowski, MData augmentation for improving deep learning in image classification problem. In 2018 International Interdisciplinary PhD Workshop (IIPhDW) 2018 (pp. 117-122). DOI: https://doi.org/10.1109/IIPHDW.2018.8388338

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen. MobileNetV2: Inverted Residuals and Linear Bottlenecks.

Simonyan K, Zisserman A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv; 2014. Disponível em: https://arxiv.org/abs/1409.1556

He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image Recognition. arXiv; 2015. Disponível em: https://arxiv.org/abs/1512.03385 DOI: https://doi.org/10.1109/CVPR.2016.90

Tan M, Le QV. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. arXiv. 2019; Disponível em: https://arxiv.org/abs/1905.11946

Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv; 2014. Disponível em: https://arxiv.org/abs/1412.6980

Downloads

Publicado

19-11-2024

Como Citar

Cardoso, F., Vilela, V. S., Araújo Filho, R. C., Lopes, A., Mogami, R., & Figueiredo, K. (2024). Classificação de padrões de esclerodermia utilizando deep learning. Journal of Health Informatics, 16(Especial). https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1300

Artigos Semelhantes

1 2 3 4 5 6 7 8 9 10 > >> 

Você também pode iniciar uma pesquisa avançada por similaridade para este artigo.

Artigos mais lidos pelo mesmo(s) autor(es)