Redes Neurais Densas para Classificação de Estresse
Palavras-chave:
Estresse Psicológico, Redes Neurais, Otimização Grid-SearchResumo
Objetivo: Propor uma arquitetura de rede neural otimizada para classificação de estresse com base em sinais vitais coletados por meio de dispositivos vestíveis. Métodos: Uso de rede neural densa, multicamadas, otimizada por meio da técnica Grid-Search para seleção de hiperparâmetros. Para treinamento e avaliação da rede foi utilizada a base de dados pública WESAD. Resultados: O modelo proposto atingiu acurácia média de 98.55% com desvio padrão de 0.28% em validação cruzada k-fold, batendo o modelo de referência que apresentou acurácia média de 86.14% e desvio padrão de 4.61% nas mesmas condições. Conclusão: Por meio de técnicas de otimização de hiperparâmetros para redes neurais, pode-se obter modelos com acurácia elevada na tarefa de classificação de estresse a partir de sinais fisiológicos coletados por dispositivos vestíveis.Downloads
Publicado
Como Citar
Edição
Seção
Licença
A submissão de um artigo ao Journal of Health Informatics é entendida como exclusiva e que não está sendo considerada para publicação em outra revista. A permissão dos autores para a publicação de seu artigo no J. Health Inform. implica na exclusiva autorização concedida aos editores para incluí-lo na revista. Ao submeter um artigo, ao autor será solicitada a permissão eletrônica de um Termo de Transferência de Direitos Autorais. Uma mensagem eletrônica será enviada ao autor correspondente confirmando o recibo do manuscrito e o aceite da Declaração de Direito Autoral.