Detection of Obstructive Sleep Apnea Through Heart Rate Variability

Authors

  • Jonatas de Lira Rocha Universidade Vila Velha (UVV)
  • Evandro Ottoni Teatini Salles Universidade Estadual de Campinas (Unicamp)
  • Rodrigo Varejão Andreão Institut Nactional des Télécommunications (INT)

DOI:

https://doi.org/10.59681/2175-4411.v15.iEspecial.2023.1084

Keywords:

Diagnosis, Heart Rate, Sleep Apnea Syndromes

Abstract

Obstructive sleep apnea (OSA) is a respiratory problem that interferes with human quality of life. The detection of OSA can be done indirectly through the analysis of heart rate variability (HRV). In this context, this work investigates the use of HRV in the detection of OSA. For this, a set of ECG recordings from a database of individuals suffering from OSA was used in the study. First, statistical measurements of the HRV are extracted in the time and frequency domains of each 5-minute stretch of the ECG signal, which serve as input characteristics of the classifier. The following classifiers were implemented and compared: neural network (NN), k-nearest neighbors (KNN) and support vector machine (SVM). The results achieved in terms of accuracy were 79.3% for NN, 80.9% for KNN and 83.0% for SVM in detecting OSA.

Author Biographies

Jonatas de Lira Rocha, Universidade Vila Velha (UVV)

Bacharelado em Engenharia Elétrica, Universidade Vila Velha (UVV).

Evandro Ottoni Teatini Salles, Universidade Estadual de Campinas (Unicamp)

Doutorado em Engenharia Elétrica, Universidade Estadual de Campinas (Unicamp).

Rodrigo Varejão Andreão, Institut Nactional des Télécommunications (INT)

Doutorado em otimização e Segurança de Sistemas, Institut Nactional des Télécommunications (INT).

References

Young, T., Palta, M., Dempsey, J., Skatrud, J., Weber, S., Badr, S. The occurrence of sleep-disordered breathing among middle-aged adults. N Engl J Med. 1993 Apr 29;328(17):1230-5. doi: 10.1056/NEJM199304293281704. PMID: 8464434.

Partinen, M., Guilleminault, C. Daytime sleepiness and vascular morbidity at seven-year follow-up in obstructive sleep apnea patients. Chest. 1990 Jan;97(1):27- 32. doi: 10.1378/chest.97.1.27. PMID: 2295260.

Marieb, E. N.; Hoehn, K. Human Anatomy & Physiology. 9ª. ed. [S.l.]: Pearson, 2012.

Zwillich, C.W. Sleep apnoea and autonomic function. Thorax 1998; 53:S20-S24.

Redline, S., Sanders, M.H., Lind, B.K., Quan, S.F., Iber, C., Gottlieb, D.J., Bonekat, W.H., Rapoport, D.M., Smith, P.L., Kiley, J.P. Methods for obtaining and analyzing unattended polysomnography data for a multicenter study. Sleep Heart Health Research Group. Sleep. 1998 Nov 1;21(7):759-67. PMID: 11300121.

Guyton, A. C. e Hall, J. E. (2002). Tratado de Fisiologia Médica. Editora Guanabara Koogan SA, 10 edição.

Carvalho, J. L. A. (2003). Ferramenta para Análise Tempo-Freqüencial da Variabilidade da Freqüência Cardíaca. Dissertação de Mestrado, Publicação ENE.DM-156A/03, Departamento de Engenharia Elétrica, Universidade de Brasília, Brasília , DF, 99 p.

Bradley, T.D., Floras, J.S. Obstructive sleep apnoea and its cardiovascular consequences. Lancet. 2009 Jan 3;373(9657):82-93. doi: 10.1016/S0140- 6736(08)61622-0. Epub 2008 Dec 26. PMID: 19101028

Rondina, João Antonio de Santa Ritta e. Apneia obstrutiva do sono e sua influência no sistema nervoso. 2018. 46 f., il. Trabalho de Conclusão Curso (Bacharelado em Engenharia Elétrica)—Universidade de Brasília, Brasília, 2018.

MATLAB. Version 9.10.0.1602886 (R2021a). Natick, Massachusetts: The MathWorks Inc.;2021

T Penzel, GB Moody, RG Mark, AL Goldberger, JH Peter. The Apnea-ECG Database. Computers in Cardiology 2000; 27:255-258

Li K., Pan W., Li Y., Jiang Q., Liu G. A method to detect sleep apnea based on deep neural network and hidden Markov model using single-lead ECG signal. Neurocomputing. 2018; 294:94–101. doi: 10.1016/j.neucom.2018.03.011.

Wang T, Lu C, Shen G. Detection of Sleep Apnea from Single-Lead ECG Signal Using a Time Window Artificial Neural Network. Biomed Res Int. 2019 Dec 23; 2019:9768072. doi: 10.1155/2019/9768072. PMID: 31950061; PMCID: PMC6948296.

Sharan RV, Berkovsky S, Xiong H, Coiera E. ECG-Derived Heart Rate Variability Interpolation and 1-D Convolutional Neural Networks for Detecting Sleep Apnea. Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul; 2020:637-640. doi: 10.1109/EMBC44109.2020.9175998. PMID: 33018068.

Niskanen JP, Tarvainen MP, Ranta-Aho PO, Karjalainen PA. Software for advanced HRV analysis. Comput Methods Programs Biomed. 2004; 76(1):73-81.

Vanderlei, Marques, L.C., Pastre, C.M., HoshI, R.A., Carvalho, T.D and Godoy, M.F. "Noções Básicas De Variabilidade Da Frequência Cardíaca E Sua Aplicabilidade Clínica." Revista Brasileira De Cirurgia Cardiovascular 24.2 (2009): 205- 17. Web.

Cortes C., Vapnik V. Support-vector networks. Mach. Learn. 1995; 20:273–297. doi: 10.1007/BF00994018.

Guo G., Wang H., Bell D., Bi Y., Greer K. Lecture Notes in Computer Science, Proceedings of the OTM Confederated International Conferences “On the Move to Meaningful Internet Systems”, Catania, Italy, 3–7 November 2003. Springer; Berlin/Heidelberg, Germany: 2003. KNN model-based approach in classification; pp. 986–996.

Published

2023-07-20

How to Cite

Rocha, J. de L., Salles, E. O. T., & Andreão, R. V. (2023). Detection of Obstructive Sleep Apnea Through Heart Rate Variability. Journal of Health Informatics, 15(Especial). https://doi.org/10.59681/2175-4411.v15.iEspecial.2023.1084

Similar Articles

<< < 3 4 5 6 

You may also start an advanced similarity search for this article.