Machine learning algorithms for the prediction of bacterial resistance
DOI:
https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1264Keywords:
Intensive Care Units, Machine Learning, Microbial drug resistanceAbstract
Antibiotic resistance represents a significant concern for global health, particularly in intensive care units (ICUs), where rapid diagnosis is essential. Study objective: To test Machine Learning algorithms for predicting bacterial resistance in ICUs; Methods: Factors such as age, gender, sample type, tested antibiotic, and Gram staining of bacteria were extracted from the MIMIC-III database and used for training six machine learning models. Results: The Extreme Gradient Boosting showed the highest prediction accuracy, at 84.53%. Conclusion: Machine Learning could offer a solution for the early detection of antibiotic resistance, thereby improving patient care and antibiotic management.
References
IACG. No Time To Wait: Securing the Future From Drug-Resistant Infections Report To the Secretary-General of the United Nations [Internet]. World Health Organization. 2019. Available from: https://www.who.int/antimicrobial-resistance/interagency-coordination- group/IACG_final_report_EN.pdf?ua=1
Murray CJ, Ikuta KS, Sharara F, Swetschinski L, Robles Aguilar G, Gray A, et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet [Internet]. 2022 Feb 12 [cited 2022 Sep 10];399(10325):629–55. Available from: http://www.thelancet.com/article/S0140673621027240/fulltext
March-Rosselló GA. Rapid methods for detection of bacterial resistance to antibiotics. Enfermedades Infecc y Microbiol Clínica (English Ed [Internet]. 2017 Mar 1 [cited 2022 Sep 10];35(3):182–8. Available from: https://www.elsevier.es/en-revista-enfermedades- infecciosas-microbiologia-clinica-english-428-articulo-rapid-methods-for-detection- bacterial-S2529993X17300606
Evans L, Rhodes A, Alhazzani W, Antonelli M, Coopersmith CM, French C, et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock 2021. Crit Care Med [Internet]. 2021 Nov 1 [cited 2022 Sep 10];49(11):E1063–143. Available from: https://journals.lww.com/ccmjournal/Fulltext/2021/11000/Surviving_Sepsis_Campaign I nternational.21.aspx
Anahtar MN, Yang JH, Kanjilal S. Applications of Machine Learning to the Problem of Antimicrobial Resistance: an Emerging Model for Translational Research. J Clin Microbiol [Internet]. 2021 Jun 18 [cited 2022 Apr 15];59(7):e0126020. Available from: https://journals.asm.org/journal/jcm
Feretzakis G, Sakagianni A, Loupelis E, Kalles D, Skarmoutsou N, Martsoukou M, et al. Machine Learning for Antibiotic Resistance Prediction: A Prototype Using Off-the-Shelf Techniques and Entry-Level Data to Guide Empiric Antimicrobial Therapy. Healthc Inform Res [Internet]. 2021 Jul 1 [cited 2022 Apr 16];27(3):214. Available from:
/pmc/articles/PMC8369050/
Feretzakis G, Loupelis E, Sakagianni A, Kalles D, Martsoukou M, Lada M, et al. Using Machine Learning Techniques to Aid Empirical Antibiotic Therapy Decisions in the Intensive Care Unit of a General Hospital in Greece. Antibiot 2020, Vol 9, Page 50
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Submission of a paper to Journal of Health Informatics is understood to imply that it is not being considered for publication elsewhere and that the author(s) permission to publish his/her (their) article(s) in this Journal implies the exclusive authorization of the publishers to deal with all issues concerning the copyright therein. Upon the submission of an article, authors will be asked to sign a Copyright Notice. Acceptance of the agreement will ensure the widest possible dissemination of information. An e-mail will be sent to the corresponding author confirming receipt of the manuscript and acceptance of the agreement.