Epilepsy detection in electroencephalogram using reduced convolutional neural networks

Authors

  • Luiz Antonio Nicolau Anghinoni Universidade Tecnológica Federal do Paraná,
  • Marcelo Teixeira Universidade Tecnológica Federal do Paraná
  • Marco Antonio de Castro Barbosa Universidade Tecnológica Federal do Paraná
  • Dalcimar Casanova Universidade Tecnológica Federal do Paraná
  • Jefferson Tales Oliva Universidade Tecnológica Federal do Paraná

DOI:

https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1279

Keywords:

Deep Learning, Electroencephalography, Epilepsy

Abstract

Objective: Creation and comparison of deep learning models based on electroencephalogram (EEG) segments represented in time and frequency domain for the detection of epilepsy. Method: Two Convolutional Neural Network models were implemented and evaluated, each fed by electroencephalography data in different domains (time and frequency). Results: The models evaluated showed average accuracy between 73.37% and 82.08%. The model trained from EEG represented in the frequency domain achieved higher values ​​for all metrics. By applying the Mann-Whitney U hypothesis statistical test, considering a significance level of 5%, a statistically significant difference was evidenced between the models. Conclusion: The results indicate that the model trained with EEG segments represented in frequency had promising performance in detecting epileptic seizures. Additionally, even though the architecture of the developed models is simpler compared to related works, competitive results were achieved.

Author Biographies

Luiz Antonio Nicolau Anghinoni, Universidade Tecnológica Federal do Paraná,

Bacharel, Programa de Pós-Graduação em Engenharia Elétrica e Computação, Universidade Tecnológica Federal do Paraná, Pato Branco (PR), Brasil.

Marcelo Teixeira, Universidade Tecnológica Federal do Paraná

Doutor, Programa de Pós-Graduação em Engenharia Elétrica e Computação, Universidade Tecnológica Federal do Paraná, Pato Branco (PR), Brasil.

Marco Antonio de Castro Barbosa, Universidade Tecnológica Federal do Paraná

Doutor, Programa de Pós-Graduação em Engenharia de Produção e Sistemas, Universidade Tecnológica Federal do Paraná, Pato Branco (PR), Brasil.

Dalcimar Casanova, Universidade Tecnológica Federal do Paraná

Doutor, Programa de Pós-Graduação em Engenharia Elétrica e Computação, Universidade Tecnológica Federal do Paraná, Pato Branco (PR), Brasil.

Jefferson Tales Oliva, Universidade Tecnológica Federal do Paraná

Doutor, Programa de Pós-Graduação em Engenharia Elétrica e Computação, Universidade Tecnológica Federal do Paraná, Pato Branco (PR), Brasil.

References

World Health Organization. Epilepsy: a public health imperative. 2019.

Shin HW, Jewells V, Hadar E, Fisher T, Hinn A. Review of epilepsy-etiology, diagnostic evaluation and treatment. Int J Neurorehabilitation. 2014;1(130):2376-0281.

Freeman W, Quiroga RQ. Imaging brain function with EEG: advanced temporal and spatial analysis of electroencephalographic signals. Springer Science & Business Media; 2012 Oct 28. DOI: https://doi.org/10.1007/978-1-4614-4984-3

Oliva JT, Rosa JL. Classification for EEG report generation and epilepsy detection. Neurocomputing. 2019 Mar 28;335:81-95. DOI: https://doi.org/10.1016/j.neucom.2019.01.053

Alotaiby TN, Alshebeili SA, Alshawi T, Ahmad I, Abd El-Samie FE. EEG seizure detection and prediction algorithms: a survey. Journal on Advances in Signal Processing. 2014:1-21. DOI: https://doi.org/10.1186/1687-6180-2014-183

Craik A, He Y, Contreras-Vidal JL. Deep learning for electroencephalogram (EEG) classification tasks: a review. Journal of neural engineering. 2019 Apr 9;16(3):031001. DOI: https://doi.org/10.1088/1741-2552/ab0ab5

Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021 Jun 10;33(12):6999-7019. DOI: https://doi.org/10.1109/TNNLS.2021.3084827

Yu Y, Si X, Hu C, Zhang J. A review of recurrent neural networks: LSTM cells and network architectures. Neural computation. 2019 Jul 1;31(7):1235-70. DOI: https://doi.org/10.1162/neco_a_01199

Xu C, Zhao P, Liu Y, Xu J, S. Sheng VS, Cui Z, Zhou X, Xiong H. Recurrent convolutional neural network for sequential recommendation. In The world wide web conference 2019 (pp. 3398-3404). DOI: https://doi.org/10.1145/3308558.3313408

Jana R, Mukherjee I. Deep learning based efficient epileptic seizure prediction with EEG channel optimization. Biomedical Signal Processing and Control. 2021 Jul 1;68:102767. DOI: https://doi.org/10.1016/j.bspc.2021.102767

Sharan RV, Berkovsky S. Epileptic seizure detection using multi-channel EEG wavelet power spectra and 1-D convolutional neural networks. In2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) 2020 Jul 20 (pp. 545-548). DOI: https://doi.org/10.1109/EMBC44109.2020.9176243

Brigham EO. The fast Fourier transform and its applications. Prentice-Hall, Inc.; 1988 Jul 1.

Daubechies I. The wavelet transform, time-frequency localization and signal analysis. IEEE transactions on information theory. 1990 Sep;36(5):961-1005. DOI: https://doi.org/10.1109/18.57199

Yao X, Li X, Ye Q, Huang Y, Cheng Q, Zhang GQ. A robust deep learning approach for automatic classification of seizures against non-seizures. Biomedical Signal Processing and Control. 2021 Feb 1;64:102215. DOI: https://doi.org/10.1016/j.bspc.2020.102215

Thodoroff P, Pineau J, Lim A. Learning robust features using deep learning for automatic seizure detection. In Machine learning for healthcare conference 2016 Dec 10 (pp. 178-190).

Guttag J. CHB-MIT Scalp EEG Database. PhysioNet. 2010. doi: 10.13026/C2K01R.

Monard MC, Baranauskas JA. Conceitos sobre aprendizado de máquina. Sistemas inteligentes-Fundamentos e aplicações. 2003;1(1):32.

Sokolova M, Lapalme G. A systematic analysis of performance measures for classification tasks. Information processing & management. 2009 Jul 1;45(4):427-37. DOI: https://doi.org/10.1016/j.ipm.2009.03.002

Xu QS, Liang YZ. Monte Carlo cross validation. Chemometrics and Intelligent Laboratory Systems. 2001 Apr 16;56(1):1-1. DOI: https://doi.org/10.1016/S0169-7439(00)00122-2

Mann HB, Whitney DR. On a test of whether one of two random variables is stochastically larger than the other. The annals of mathematical statistics. 1947 Mar 1:50-60. DOI: https://doi.org/10.1214/aoms/1177730491

Günther F, Fritsch S. Neuralnet: training of neural networks. The R Journal. 2010 Jun 2(1):30-38. DOI: https://doi.org/10.32614/RJ-2010-006

Published

2024-11-19

How to Cite

Anghinoni, L. A. N., Teixeira, M., Barbosa, M. A. de C., Casanova, D., & Oliva, J. T. (2024). Epilepsy detection in electroencephalogram using reduced convolutional neural networks. Journal of Health Informatics, 16(Especial). https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1279

Similar Articles

1 2 3 4 5 6 > >> 

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)