On the voice signal analysis for the diagnosis of Parkinson's disease
DOI:
https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1305Keywords:
Diagnosis, Machine Learning, Parkinson DiseaseAbstract
Objetivo: Este estudo investiga se o possível viés na sobreamostragem via janelamento de dados de marcha em indivíduos com Doença de Parkinson (DP) também ocorre em sinais vocais. Um estudo anterior levantou a hipótese de que amostras distintas de um mesmo indivíduo não devem ser tratadas independentemente, dado o risco de enviesamento dos modelos. Método: Usamos sinais de voz de 24 indivíduos com DP e 8 saudáveis, e os algoritmos K-Nearest Neighbors (KNN), Support Vector Machine (SVM) e Random Forest (RF). A validação cruzada foi feita com Leave-one-out (LOOCV), adaptada para cenários com e sem viés nos dados de treinamento. Resultados: Modelos avaliados sem considerar o viés apresentaram performances inflacionadas, enquanto a abordagem rigorosa mostrou resultados mais modestos. Conclusão: Amostras do mesmo indivíduo em treinamento e teste podem inflar a performance dos modelos. A correta aplicação da sobreamostragem é crucial para desenvolver modelos confiáveis para o diagnóstico de DP.
References
Prabhavathi, K., and Shantanu Patil. Tremors and bradykinesia. Techniques for Assessment of Parkinsonism for Diagnosis and Rehabilitation (2022): 135-149. DOI: https://doi.org/10.1007/978-981-16-3056-9_9
Braak, Heiko, and Eva Braak. Pathoanatomy of Parkinson’s disease. Journal of neurology 247 (2000): II3-II10. DOI: https://doi.org/10.1007/PL00007758
Tanner, Caroline M. Epidemiology of Parkinson’s disease. Neurologic clinics 10.2 (1992): 317-329. DOI: https://doi.org/10.1016/S0733-8619(18)30212-3
Stewart A. Factor, William J. Weiner (2008) Parkinson Disease - Diagnosis and Clinical Management 2nd ed; 77-94
Ho, Aileen K., et al. Speech impairment in a large sample of patients with Parkinson's disease. Behavioural neurology 11.3 (1998): 131-137. DOI: https://doi.org/10.1155/1999/327643
Atarachi, J., and E. Uchida. A clinical study of Parkinsonism. Recent Adv Res Nerv Syst 1959; 3: 871 882 (1959).
Little, Max, et al. Suitability of dysphonia measurements for telemonitoring of Parkinson’s disease. Nature Precedings (2008): 1-1. DOI: https://doi.org/10.1038/npre.2008.2298.1
Aich, Satyabrata, et al. A supervised machine learning approach using different feature selection techniques on voice datasets for prediction of Parkinson’s disease. 2019 21st International Conference on Advanced Communication Technology (ICACT). IEEE, 2019. DOI: https://doi.org/10.23919/ICACT.2019.8701961
Ouhmida, Asmae, et al. Voice-Based Deep Learning Medical Diagnosis System for Parkinson's Disease Prediction. 2021 International Congress of Advanced Technology and Engineering (ICOTEN). IEEE, 2021. DOI: https://doi.org/10.1109/ICOTEN52080.2021.9493456
Rana, Arti, et al. An efficient machine learning approach for diagnosing Parkinson’s disease by utilizing voice features. Electronics 11.22 (2022): 3782. DOI: https://doi.org/10.3390/electronics11223782
Govindu, Aditi, and Sushila Palwe. Early detection of Parkinson's disease using machine learning. Procedia Computer Science 218 (2023): 249-261. DOI: https://doi.org/10.1016/j.procs.2023.01.007
Chagas, A., Bucci, G., Félix, J., Fonseca, A., Nascimento, H., & Soares, F. (2024). Avaliando a Sobreamostragem de Dados Temporais de Marcha no Diagnóstico Automático de Doenças Neurodegenerativas. In Anais do XXIV Simpósio Brasileiro de Computação Aplicada à Saúde, (pp. 567-578). Porto Alegre: SBC. doi:10.5753/sbcas.2024.2776 DOI: https://doi.org/10.5753/sbcas.2024.2776
Quoc Cuong Ngo, Mohammod Abdul Motin, Nemuel Daniel Pah, Drotar P, Kempster P, Kumar D. Computerized analysis of speech and voice for Parkinson’s disease: A systematic review. Computer Methods and Programs in Biomedicine. 2022 Nov 1;226:107133–3. DOI: https://doi.org/10.1016/j.cmpb.2022.107133
Faceli, K., et al. Inteligência Artificial: Uma abordagem de aprendizagem de máquina, LTC, Ed. Rio de Janeiro: Grupo Editorial Nacional (2011).
Duda, Richard O., and Peter E. Hart. Pattern classification. John Wiley & Sons, 2006.
Altman DG, Bland JM. Diagnostic tests. 1: Sensitivity and specificity. BMJ. 1994 Jun 11;308(6943):1552. doi: 10.1136/bmj.308.6943.1552. PMID: 8019315; PMCID: PMC2540489. DOI: https://doi.org/10.1136/bmj.308.6943.1552
Gunawardana, Asela, and Guy Shani. A survey of accuracy evaluation metrics of recommendation tasks. Journal of Machine Learning Research 10.12 (2009).
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Submission of a paper to Journal of Health Informatics is understood to imply that it is not being considered for publication elsewhere and that the author(s) permission to publish his/her (their) article(s) in this Journal implies the exclusive authorization of the publishers to deal with all issues concerning the copyright therein. Upon the submission of an article, authors will be asked to sign a Copyright Notice. Acceptance of the agreement will ensure the widest possible dissemination of information. An e-mail will be sent to the corresponding author confirming receipt of the manuscript and acceptance of the agreement.