Development and evaluation of an architecture for remote health monitoring using fog and cloud Computing

Authors

  • Paulo Cesar Salgado Vidal Instituto Militar de Engenharia
  • Ronaldo Moreira Salles Instituto Politécnico do Porto
  • Marcelo Quesado Filgueiras Universidade Federal de Juiz de Fora
  • Juan Felipe Souza Oliveira Instituto Militar de Engenharia

DOI:

https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1335

Keywords:

Fog Computing, Remote Health Monitoring, Internet of Things

Abstract

The growing demand for health monitoring solutions in outdoor environments such as beaches, stadiums, and urban centers highlights the need for efficient and resilient architectures in the context of the Internet of Things. Objectives: To propose a layered architecture for health monitoring in outdoor environments, combining fog and cloud computing for efficient and reliable collection and analysis of health data. Methods: Monitoring is conducted through smartbands and smartphones, utilizing fog computing at the network edge to mitigate connection instabilities. Results: The proposed architecture ensures data integrity even in environments with unstable networks. Conclusion: The solution demonstrates effectiveness in health monitoring in outdoor environments, offering a reliable solution for real-time data collection and analysis despite potential communication network instabilities.

Author Biographies

Paulo Cesar Salgado Vidal, Instituto Militar de Engenharia

Doutor, Professor, Seção de Engenharia de Computação, Instituto Militar de Engenharia, Rio de Janeiro - RJ, Brasil

Ronaldo Moreira Salles, Instituto Politécnico do Porto

Doutor, Professor, CIICESI, ESTG, Instituto Politécnico do Porto, Portugal

Marcelo Quesado Filgueiras, Universidade Federal de Juiz de Fora

Mestre, Médico, Neurocirurgião, Departamento de Biologia, Universidade Federal de Juiz de Fora, Juiz de Fora-MG, Brasil

Juan Felipe Souza Oliveira, Instituto Militar de Engenharia

Mestrando, Seção de Engenharia de Computação, Instituto Militar de Engenharia, Rio de Janeiro - RJ, Brasil

References

Manyika, J., Chui, M., Bisson, P., Woetzel, J., Dobbs, R., Bughin, J., & Aharon, D. (2015). Unlocking the potential of the internet of things. McKinsey Global Institute, 1, 1–2.

Farahani, B., Firouzi, F., Chang, V., Badaroglu, M., Constant, N., & Mankodiya, K. (2018). Towards fog-driven iot ehealth: Promises and challenges of iot. Future Generation Computer Systems, 78(Pt 2), 659-676. DOI: https://doi.org/10.1016/j.future.2017.04.036

Do Nascimento, M. G., Iorio, G., Thomé, T. G., Medeiros, A. A., Mendonça, F. M., Campos, F. A., ... & Dantas, M. A. (2020). Covid-19: A digital transformation approach to a public primary healthcare environment. In 2020 IEEE Symposium on Computers and Communications (ISCC). DOI: https://doi.org/10.1109/ISCC50000.2020.9219643

Vilela, P. H., Rodrigues, J. J., Vilela, L. R., Mahmoud, M. M., & Solic, P. (2018). A critical analysis of healthcare applications over fog computing infrastructures. In 2018 3rd International Conference on Smart and Sustainable Technologies (SpliTech), 1–5.

Ahmadi, Z., Haghi Kashani, M., Nikravan, M., & Mahdipour, E. (2021). Fog-based healthcare systems: A systematic review. Multimedia Tools and Applications, 69(1), 1–40. DOI: https://doi.org/10.1007/s11042-021-11227-x

Alshammari, H. H. (2023). The internet of things healthcare monitoring system based on MQTT protocol. Alexandria Engineering Journal, 69, 275–287. DOI: https://doi.org/10.1016/j.aej.2023.01.065

Tardieu, H., Daly, D., Esteban-Lauzán, J., Hall, J., & Miller, G. (2020). Case study 2: the digital transformation of health care. -, -, 237–244. DOI: https://doi.org/10.1007/978-3-030-37955-1_23

Ahmed Kamal, M., Ismail, Z., Shehata, I. M., Djirar, S., Talbot, N. C., Ahmadzadeh, S., ... & Kaye, A. D. (2023). Telemedicine, e-health, and multi-agent systems for chronic pain management. Clinics and Practice, 13(2), 470–482. DOI: https://doi.org/10.3390/clinpract13020042

Mendonça, F. M., Dantas, M. A., Fortunato, W. T., Oliveira, J. F., Souza, B. C., & Filgueiras, M. Q. (2022). Wearable devices in healthcare: Challenges, current trends and a proposition of affordable low cost and scalable computational environment of internet of things. In Brazilian Congress on Biomedical Engineering, -, 2022. Proceedings... [S.l.: s.n.], 1301–1308. DOI: https://doi.org/10.1007/978-3-030-70601-2_194

Júnior, C. A. M., Mendonça, F. M., Dantas, M. A. R., De Carvalho Hilgemberg, A. L., De Medeiros, Á. A. M., Oliveira, J. F. S., ... & Thomé, T. G. (2021). Presenting epidor: a management information system to support pain medicine. Brazilian Journal of Development, 7(2), 20539–20550. DOI: https://doi.org/10.34117/bjdv7n2-615

Babar, K., & Ali Shah, M. (2022). Scalable and sustainable mist computing-based architecture for internet of health things. In Competitive Advantage in the Digital Economy (CADE 2022), 1., 2022. Proceedings... [S.l.: s.n.], 111–116.management information system to support pain medicine. Brazilian Journal of Development, 7(2), 20539–20550. DOI: https://doi.org/10.1049/icp.2022.2050

Stavrinides, G. L., & Karatza, H. D. (2019). A hybrid approach to scheduling real-time IoT workflows in fog and cloud environments. Multimedia Tools and Applications, 78(17), 24639–24655. DOI: https://doi.org/10.1007/s11042-018-7051-9

Bansal, S., & Aggarwal, H. 2022. Priority-based cloud-fog architecture for smart healthcare systems. IEEE International Conference on Current Development in Engineering and Technology, 1, 1–7. DOI: https://doi.org/10.1109/CCET56606.2022.10080672

Fernando, N., Loke, S. W., & Rahayu, W. 2013. Mobile cloud computing: A survey. Future Generation Computer Systems, 29(1), 84–106. DOI: https://doi.org/10.1016/j.future.2012.05.023

Gomes, E., Zanatta, R., Plentz, P., Rolt, C. D., & Dantas, M. 2020. An approach of time constraint of data intensive scalable in e-health environment. In International Conference on P2P, Parallel, Grid, Cloud and Internet Computing, 1., 2020, 158–169.

Ni, J., Zhang, K., Lin, X., & Shen, X. 2017. Securing fog computing for internet of things applications: Challenges and solutions. IEEE Communications Surveys & Tutorials, 20(1), 601–628. DOI: https://doi.org/10.1109/COMST.2017.2762345

Ilyas, A., Alatawi, M., Hamid, Y., Mahfooz, S., Zada, I., Gohar, N., & Shah, M. A. 2022. Software architecture for pervasive critical health monitoring systems using fog computing. Journal of Cloud Computing, 2022, 84. DOI: https://doi.org/10.1186/s13677-022-00371-w

Sharma, P., & Gupta, P. K. 2023. Optimization of IoT-Fog Network Path and fault Tolerance in Fog Computing based Environment. Procedia Computer Science, 218, 2494–2503. DOI: https://doi.org/10.1016/j.procs.2023.01.224

Luan, T., Gao, L., Li, Z., Xiang, Y., & Sun, L. 2015. Fog Computing: Focusing on Mobile Users at the Edge. Comput. Sci.

Shaji, S., Sankaran, R., Guntha, R., & Pathinarupothi, R. K. 2023. A Real-time IoMT Enabled Remote Cardiac Rehabilitation Framework. In 2023 15th International Conference on COMmunication Systems NETworkS(COMSNETS), 153–158. DOI: https://doi.org/10.1109/COMSNETS56262.2023.10041272

Al-Joboury, I., & Al-Hemiary, E. 2018. Performance Analysis of Internet of Things Protocols Based Fog/Cloud over High Traffic. Journal of Fundamental and Applied Sciences, 10, 176–181.

Gomes, E., Zanatta, R., Plentz, P., De Rolt, C., & Dantas, M. 2020. An Approach of Time Constraint of Data Intensive Scalable in e-Health Environment. In International Conference on P2P, Parallel, Grid, Cloud and Internet Computing. Springer, 158–169. DOI: https://doi.org/10.1007/978-3-030-61105-7_16

Published

2024-11-19

How to Cite

Vidal, P. C. S., Salles, R. M., Filgueiras, M. Q., & Oliveira, J. F. S. (2024). Development and evaluation of an architecture for remote health monitoring using fog and cloud Computing. Journal of Health Informatics, 16(Especial). https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1335

Similar Articles

<< < 14 15 16 17 18 19 20 21 22 > >> 

You may also start an advanced similarity search for this article.