Modelo multi-task para la clasificación y segmentación de tumores cerebrales

Autores/as

  • Guilherme Müller Ferreira UFCSPA
  • Viviane Rodrigues Botelho UFCSPA
  • Áttila Leães Rodrigues UFRGS
  • Carla Diniz Lopes Becker UFCSPA
  • Thatiane Alves Pianoschi Alva UFCSPA

DOI:

https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1296

Palabras clave:

Inteligencia Artificial, Neoplasias Encefálicas, Aprendizaje Profundo

Resumen

Objetivo: Validar si un modelo multi-task (MTL) para la clasificación y segmentación de tumores cerebrales es superior a un enfoque de single-task (ST). Método: La arquitectura del modelo consta de un encoder, que se bifurca en una fully connected (clasificación) y un decoder (segmentación). Para el ST, solo se consideró la rama de clasificación. Ambos fueron entrenados utilizando el enfoque de validación cruzada de 5 pliegues con los conjuntos de datos SARTAJ y Figshare. Resultados: El MTL logró una precisión del 95.99% ± 0.70% en comparación con el 95.87% ± 1.01% del ST. Conclusión: Ambos modelos presentaron desempeños similares, sin embargo el MTL reveló algunas ventajas, como una mayor estabilidad de las métricas, resultante de la menor desviación estándar en todas las métricas. En comparación con la literatura, el MTL logró una precisión solo un 3% por debajo del mejor modelo analizado y también tuvo un número significativamente menor de parámetros, hasta 187 veces menos.

Biografía del autor/a

Guilherme Müller Ferreira, UFCSPA

Master’s Student, Federal University of Health Sciences of Porto Alegre – UFCSPA,Porto Alegre (RS), Brazil.

Viviane Rodrigues Botelho, UFCSPA

Ph.D., Federal University of Health Sciences of Porto Alegre – UFCSPA, DECESA, Porto Alegre (RS), Brazil.

Áttila Leães Rodrigues, UFRGS

P.h.D., Federal University of Rio Grande do Sul - UFRGS, DEMIN, Porto Alegre (RS), Brazil.

Carla Diniz Lopes Becker, UFCSPA

Ph.D., Federal University of Health Sciences of Porto Alegre – UFCSPA, DECESA, Porto Alegre (RS), Brazil

Thatiane Alves Pianoschi Alva, UFCSPA

Ph.D., Federal University of Health Sciences of Porto Alegre – UFCSPA, DECESA, Porto Alegre (RS), Brazil.

Citas

Thierheimer M, Cioffi G, Waite KA, Kruchko C, Ostrom QT, Barnholtz-Sloan JS. Mortality trends in primary malignant brain and central nervous system tumors vary by histopathology, age, race, and sex. J Neurooncol. 2023;162:167-177. DOI: https://doi.org/10.1007/s11060-023-04279-6

Deorah S, Lynch CF, Sibenaller ZA, Ryken TC. Trends in Brain Cancer Incidence and Survival in the United States: Surveillance, Epidemiology, and End Results Program, 1973 to 2001. Neurosurg Focus. 2006;20(4):E1. DOI: https://doi.org/10.3171/foc.2006.20.4.E1

Yang S, Zhu F, Ling X, Liu Q, Zhao P. Intelligent Health Care: Applications of Deep Learning in Computational Medicine. Front Genet. 2021;12:607471. DOI: https://doi.org/10.3389/fgene.2021.607471

Trombetta GBW, Fröhlich W da R, Rigo SJ, Rodrigues CA. Application of Deep Learning for Diagnosis of COVID-19-Induced Pneumonia from X-ray Images. J Health Inform [Internet]. March 15, 2021 [cited March 9, 2024];12. Available from: https://jhi.sbis.org.br/index.php/jhi-sbis/article/view/828.

LeCun Y, Bengio Y, Hinton G. Deep Learning. Nature. 2015;521:436. DOI: https://doi.org/10.1038/nature14539

Zhang Y, Yang Q. An Overview of Multi-Task Learning. Natl Sci Rev. 2018;5(1):30-43. DOI: https://doi.org/10.1093/nsr/nwx105

Crawshaw M. Multi-Task Learning with Deep Neural Networks: A Survey. arXiv. 2020.

Ruder S. An Overview of Multi-Task Learning in Deep Neural Networks. arXiv. 2017.

Tardy M, Mateus D. Leveraging Multi-Task Learning to Cope With Poor and Missing Labels of Mammograms. Front Radiol. 2021;1. DOI: https://doi.org/10.3389/fradi.2021.796078

Oliveira B, et al. A multi-task convolutional neural network for classification and segmentation of chronic venous disorders. Sci Rep. 2023;13:761. DOI: https://doi.org/10.1038/s41598-022-27089-8

Ngo DK, Tran MT, Kim SH, Yang HJ, Lee GS. Multi-Task Learning for Small Brain Tumor Segmentation from MRI. Appl Sci. 2020;10(21):7790. DOI: https://doi.org/10.3390/app10217790

Gómez-Guzmán MA, et al. Classifying Brain Tumors on Magnetic Resonance Imaging by Using Convolutional Neural Networks. Electronics. 2023;12:955. DOI: https://doi.org/10.3390/electronics12040955

Ullah N, et al. An Effective Approach to Detect and Identify Brain Tumors Using Transfer Learning. Appl Sci. 2022;12:5645. DOI: https://doi.org/10.3390/app12115645

Rasheed Z, et al. Brain Tumor Classification from MRI Using Image Enhancement and Convolutional Neural Network Techniques. Brain Sci. 2023;13(9):1320. DOI: https://doi.org/10.3390/brainsci13091320

Bhuvaji S, Kadam A, Bhumkar P, Dedge S, Kanchan S. Brain Tumor Classification (MRI). Kaggle. 2020.

Cheng J. Brain Tumor Dataset. Figshare. 2017.

Publicado

2024-11-19

Cómo citar

Ferreira, G. M., Botelho, V. R., Rodrigues, Áttila L., Becker, C. D. L., & Alva, T. A. P. (2024). Modelo multi-task para la clasificación y segmentación de tumores cerebrales. Journal of Health Informatics, 16(Especial). https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1296

Artículos similares

<< < 7 8 9 10 

También puede {advancedSearchLink} para este artículo.

Artículos más leídos del mismo autor/a