Desbloqueando el hemograma completo como una herramienta de estratificación de riesgo para el cáncer de mama utilizando aprendizaje automático
DOI:
https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1355Palabras clave:
Recuento de Células Sanguíneas, Aprendizaje Automático, Cáncer de MamaResumen
Objetivo: Evaluar la eficacia del ML en el uso del hemograma para la evaluación del riesgo de cáncer de mama. Método: Estudio retrospectivo analizó hemogramas de 396,848 mujeres de 40 a 70 años. Se identificaron 2861 casos (1882 confirmados por biopsia y 979 por imágenes), mientras que 393,987 fueron controles (BI-RADS 1 o 2). Los datos se dividieron en conjuntos de modelado (entrenamiento y validación) y prueba según la certeza diagnóstica. Resultados: El modelo de regresión ridge, que incorpora la relación neutrófilo-linfocito, los glóbulos rojos y la edad, alcanzó una AUC de 0.64. La población del estudio se estratificó en cuatro grupos de riesgo: alto, moderado, medio y bajo, con razones relativas de 1.99, 1.32, 1.02 y 0.42, respectivamente. Conclusión: ML proporciona una herramienta rentable para el cribado personalizado del cáncer de mama, mejorando potencialmente la detección temprana en entornos con recursos limitados.
Citas
Coleman C. Early Detection and Screening for Breast Cancer. Semin Oncol Nurs. 2017 May;33(2):141–55.
Araujo DC, Rocha BA, Gomes KB, da Silva DN, Ribeiro VM, Kohara MA, et al. Unlocking the complete blood count as a risk stratification tool for breast cancer using machine learning: a large scale retrospective study. Sci Rep. 2024 May 12;14(1):1–10.
Zhang K, Bangma CH, Venderbos LDF, Roobol MJ. Individual and Population-Based Screening. Management of Prostate Cancer. 2017;43–55.
Cuzick J. A breast cancer prediction model incorporating familial and personal risk factors. Hered Cancer Clin Pract. 2012;10(Suppl 2):A29.
Yala A, Mikhael PG, Strand F, Lin G, Satuluru S, Kim T, et al. Multi-Institutional Validation of a Mammography-Based Breast Cancer Risk Model. J Clin Oncol [Internet]. 2022 Jun 1 [cited 2024 May 28];40(16). Available from: https://pubmed.ncbi.nlm.nih.gov/34767469/
Danesh H, Ziamajidi N, Mesbah-Namin SA, Nafisi N, Abbasalipourkabir R. Association between Oxidative Stress Parameters and Hematological Indices in Breast Cancer Patients. Int J Breast Cancer [Internet]. 2022 Oct 3 [cited 2024 May 29];2022. Available from: https://pubmed.ncbi.nlm.nih.gov/36225290/
Amin MB, Greene FL, Edge SB, Compton CC, Gershenwald JE, Brookland RK, et al. The Eighth Edition AJCC Cancer Staging Manual: Continuing to build a bridge from a population-based to a more “personalized” approach to cancer staging. CA Cancer J Clin. 2017 Mar;67(2):93–9.
Hoerl AE, Kennard RW. Ridge Regression: Biased Estimation for Nonorthogonal Problems. Technometrics [Internet]. 1970 Feb 1 [cited 2024 May 29]; Available from: https://www.tandfonline.com/doi/abs/10.1080/00401706.1970.10488634
Ke G, Meng Q, Finely T, Wang T, Chen W, Ma W, et al. LightGBM: A Highly Efficient Gradient Boosting Decision Tree. In: Advances in Neural Information Processing Systems 30 (NIP 2017) [Internet]. 2017 [cited 2024 May 30]. Available from: https://www.microsoft.com/en-us/research/publication/lightgbm-a-highly-efficient-gradient-boosting-decision-tree/
Zuin G, Araujo D, Ribeiro V, Seiler MG, Prieto WH, Pintão MC, et al. Prediction of SARS-CoV-2-positivity from million-scale complete blood counts using machine learning. Communications Medicine. 2022 Jun 15;2(1):1–12.
Amador T, Saturnino S, Veloso A, Ziviani N. Early identification of ICU patients at risk of complications: Regularization based on robustness and stability of explanations. Artif Intell Med [Internet]. 2022 Jun [cited 2024 May 30];128. Available from: https://pubmed.ncbi.nlm.nih.gov/35534141/
Michaels E, Worthington RO, Rusiecki J. Breast Cancer: Risk Assessment, Screening, and Primary Prevention. Med Clin North Am [Internet]. 2023 Mar [cited 2024 May 30];107(2). Available from: https://pubmed.ncbi.nlm.nih.gov/36759097/
Ethier JL, Desautels D, Templeton A, Shah PS, Amir E. Prognostic role of neutrophil-to-lymphocyte ratio in breast cancer: a systematic review and meta-analysis. Breast Cancer Res [Internet]. 2017 [cited 2024 May 30];19. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5217326/
De Larco JE, Wuertz BR, Furcht LT. The potential role of neutrophils in promoting the metastatic phenotype of tumors releasing interleukin-8. Clin Cancer Res [Internet]. 2004 Aug 1 [cited 2024 May 30];10(15). Available from: https://pubmed.ncbi.nlm.nih.gov/15297389/
Katano M, Torisu M. Neutrophil-mediated tumor cell destruction in cancer ascites. Cancer [Internet]. 1982 Jul 1 [cited 2024 May 30];50(1). Available from: https://pubmed.ncbi.nlm.nih.gov/7083126/
Gago-Dominguez M, Matabuena M, Redondo CM, Patel SP, Carracedo A, Ponte SM, et al. Neutrophil to lymphocyte ratio and breast cancer risk: analysis by subtype and potential interactions. Sci Rep [Internet]. 2020 Aug 6 [cited 2024 May 30];10(1). Available from: https://pubmed.ncbi.nlm.nih.gov/32764699/
Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature [Internet]. 2008 Jul 24 [cited 2024 May 30];454(7203). Available from: https://pubmed.ncbi.nlm.nih.gov/18650914/
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
La sumisión de un artículo a el Journal of Health Informatics es entendida como exclusiva y que no esta siendo considerado para publicación en otro periódico. La permisión de los autores para la publicación de su artículo en lo JHI implica en la exclusiva autorización concedida a los editores para su inclusión en la revista. Al someter un artículo, a lo autor será solicitada la permisión electrónica de una Nota de Copyright. Una mensaje electrónica será enviada a lo autor correspondiente confirmando el recibo del manuscrito y lo aceite de la Nota de Copyright.