Uma Abordagem Influenciada por Pré-processamento para Aprendizagem do Processo de Regulação Médica
Palabras clave:
Classificação, Mineração de dados, Planos de Pré-pagamento em SaúdeResumen
Objetivo: Apresentar uma metodologia que utiliza técnicas de pré-processamento para melhorar a qualidade dos dados presentes na base de dados de uma Operadora de Plano de Saúde para, em seguida, utilizar técnicas de aprendizado de máquina objetivando aprender o processo de regulação médica. Métodos: Foram utilizadas as métricas de: precisão, recall, acurácia, f-measure, área sob a curva ROC e índice kappa para a comparação dos algoritmos de classificação C4.5, Naive Bayes e Multi Layer Perceptron. Resultados: Para a validação dos resultados foi utilizado o cross-validation 10-fold. O melhor classificador foi o C4.5, com taxa de acerto superior a 91%. Conclusão: Demonstrou-se que o processo de regulação pode ser aprendido por algoritmos de aprendizagem de máquina, porém faz-se necessário utilizar técnicas de pré-processamento para melhorar a qualidade dos dados.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
La sumisión de un artículo a el Journal of Health Informatics es entendida como exclusiva y que no esta siendo considerado para publicación en otro periódico. La permisión de los autores para la publicación de su artículo en lo JHI implica en la exclusiva autorización concedida a los editores para su inclusión en la revista. Al someter un artículo, a lo autor será solicitada la permisión electrónica de una Nota de Copyright. Una mensaje electrónica será enviada a lo autor correspondiente confirmando el recibo del manuscrito y lo aceite de la Nota de Copyright.