Validação de um chatbot como ferramenta para acompanhamento da dor crônica

Autores

  • Vagner Zeizer Carvalho Paes Bright Photomedicine Ltda
  • Ana Carolina de Magalhães Bright Photomedicine Ltda
  • Nathali Cordeiro Pinto Bright Photomedicine Ltda
  • Thaís da Silva Veriato Bright Photomedicine Ltda
  • Marcelo Victor Pires de Sousa Bright Photomedicine Ltda
  • Thereza Cury Fortunato Bright Photomedicine Ltda

DOI:

https://doi.org/10.59681/2175-4411.v15.iEspecial.2023.1076

Palavras-chave:

Dor Crônica, Evolução Clínica, Sistemas Computacionais

Resumo

Neste trabalho estudamos o uso de um chatbot como ferramenta de monitoramento da dor crônica. Foi realizada anamnese em 28 pacientes e, posteriormente, a resposta da intensidade da dor de cada paciente foi coletada pelo terapeuta e pelo chatbot. Foi obtida uma forte correlação de 0,94 entre a intensidade da dor coletada pelo terapeuta e o chatbot. Observamos que 50% das respostas ao chatbot foram registradas cerca de 30 minutos após o envio da mensagem. Pacientes na faixa etária de 30-60 anos responderam mais rápido do que outros. Com relação ao gênero, os pacientes do sexo masculino responderam mais rápido ao chatbot em média. Na medida em que as respostas foram registradas ao longo dos dias pelo chatbot, as respostas registradas diminuíram de forma aproximadamente linear. Validamos o chatbot como um monitoramento eficiente da intensidade da dor, sendo uma ferramenta de fácil interação e boa adesão por parte dos pacientes.

Biografia do Autor

Vagner Zeizer Carvalho Paes, Bright Photomedicine Ltda

Bright Photomedicine Ltda., Edifício CIETEC, Av. Prof. Lineu Prestes, 2242, São Paulo-SP, Brasil.

Ana Carolina de Magalhães, Bright Photomedicine Ltda

Bright Photomedicine Ltda., Edifício CIETEC, Av. Prof. Lineu Prestes, 2242, São Paulo-SP, Brasil. Insper Instituto de Ensino e Pesquisa, São Paulo-SP, Brasil.

Nathali Cordeiro Pinto, Bright Photomedicine Ltda

Bright Photomedicine Ltda., Edifício CIETEC, Av. Prof. Lineu Prestes, 2242, São Paulo-SP, Brasil. Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Dr Enéas de Carvalho Aguiar, 44, São Paulo-SP, Brasil.

Thaís da Silva Veriato, Bright Photomedicine Ltda

Bright Photomedicine Ltda., Edifício CIETEC, Av. Prof. Lineu Prestes, 2242, São Paulo-SP, Brasil.

Marcelo Victor Pires de Sousa, Bright Photomedicine Ltda

Bright Photomedicine Ltda., Edifício CIETEC, Av. Prof. Lineu Prestes, 2242, São Paulo-SP, Brasil. Departamento de Física, Universidade Federal do Ceará (UFC), Fortaleza-CE, Brasil. D’Or Instituto de Pesquisa e Ensino (IDOR), Rio de Janeiro-RJ, Brasil.

Thereza Cury Fortunato, Bright Photomedicine Ltda

Bright Photomedicine Ltda., Edifício CIETEC, Av. Prof. Lineu Prestes, 2242, São Paulo-SP, Brasil.

Referências

Vasconcelos FH, Araújo GC de. Prevalence of chronic pain in Brazil: a descriptive study. Brazilian Journal Of Pain [Internet]. 2018 [citado 25 de julho de 2022];1(2). Disponível em: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S2595-31922018000200176&lng=en&nrm=iso&tlng=en

Cohen SP, Vase L, Hooten WM. Chronic pain: an update on burden, best practices, and new advances. The Lancet. maio de 2021;397(10289):2082–97.

Dahlhamer J, Lucas J, Zelaya C, Nahin R, Mackey S, DeBar L, et al. Prevalence of Chronic Pain and High-Impact Chronic Pain Among Adults - United States, 2016. MMWR Morb Mortal Wkly Rep. 14 de setembro de 2018;67(36):1001–6.

Fayaz A, Croft P, Langford RM, Donaldson LJ, Jones GT. Prevalence of chronic pain in the UK: a systematic review and meta-analysis of population studies. BMJ Open. 20 de junho de 2016;6(6):e010364.

Aguiar DP, Souza CP de Q, Barbosa WJM, Santos-Júnior FFU, Oliveira AS de. Prevalence of chronic pain in Brazil: systematic review. Brazilian Journal Of Pain [Internet]. 2021 [citado 26 de julho de 2022]; Disponível em: http://www.scielo.br/scielo.php?script=sci_issues&pid=2595-3192&lng=en&nrm=isso

Hauser-Ulrich S, Künzli H, Meier-Peterhans D, Kowatsch T. A Smartphone-Based Health Care Chatbot to Promote Self-Management of Chronic Pain (SELMA): Pilot Randomized Controlled Trial. JMIR Mhealth Uhealth. 3 de abril de 2020;8(4):e15806.

Vugts MAP, Joosen MCW, van der Geer JE, Zedlitz AMEE, Vrijhoef HJM. The effectiveness of various computer-based interventions for patients with chronic pain or functional somatic syndromes: A systematic review and meta-analysis. Yang J, organizador. PLoS ONE. 16 de maio de 2018;13(5):e0196467.

Nicholl BI, Sandal LF, Stochkendahl MJ, McCallum M, Suresh N, Vasseljen O, et al. Digital Support Interventions for the Self-Management of Low Back Pain: A Systematic Review. J Med Internet Res. 21 de maio de 2017;19(5):e179.

Bickmore TW, Mitchell SE, Jack BW, Paasche-Orlow MK, Pfeifer LM, Odonnell J. Response to a Relational Agent by Hospital Patients with Depressive Symptoms. Interact Comput. 1o de julho de 2010;22(4):289–98.

Chung K, Park RC. Chatbot-based heathcare service with a knowledge base for cloud computing. Cluster Comput. janeiro de 2019;22(S1):1925–37.

Goldenthal SB, Portney D, Steppe E, Ghani K, Ellimoottil C. Assessing the feasibility of a chatbot after ureteroscopy. Mhealth. 2019;5:8.

Fitzpatrick TB. The validity and practicality of sun-reactive skin types I through VI. Archives of Dermatology. 1o de junho de 1988;124(6):869–71.

Weltgesundheitsorganisation. The SuRF report 2: surveillance of chronic disease risk factors : country-level data and comparable estimates. Geneva: World Health Organization; 2005.

de David CN, Deligne L de MC, da Silva RS, Malta DC, Duncan BB, Passos VM de A, et al. The burden of low back pain in Brazil: estimates from the Global Burden of Disease 2017 Study. Popul Health Metrics. setembro de 2020;18(S1):12.

Bento TPF, Genebra CV dos S, Maciel NM, Cornelio GP, Simeão SFAP, Vitta A de. Low back pain and some associated factors: is there any difference between genders? Brazilian Journal of Physical Therapy. janeiro de 2020;24(1):79–87.

Cateb GF, Amaral S, Gonçalves SCL, Oliveira IJR, Prates RO, Chagas BA, et al. Estudo piloto de validação de um chatbot de rastreamento, implementado para direcionar a teleassistência em COVID-19. Em: Anais Estendidos do XXI Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS Estendido 2021) [Internet]. Brasil: Sociedade Brasileira de Computação (SBC); 2021 [citado 2 de agosto de 2022]. p. 97–102. Disponível em: https://sol.sbc.org.br/index.php/sbcas_estendido/article/view/16108

Fan X, Chao D, Zhang Z, Wang D, Li X, Tian F. Utilization of Self-Diagnosis Health Chatbots in Real-World Settings: Case Study. J Med Internet Res. 6 de janeiro de 2021;23(1):e19928.

Downloads

Publicado

20-07-2023

Como Citar

Paes, V. Z. C., Magalhães, A. C. de, Pinto, N. C., Veriato, T. da S., Sousa, M. V. P. de, & Fortunato, T. C. (2023). Validação de um chatbot como ferramenta para acompanhamento da dor crônica. Journal of Health Informatics, 15(Especial). https://doi.org/10.59681/2175-4411.v15.iEspecial.2023.1076

Artigos Semelhantes

<< < 6 7 8 

Você também pode iniciar uma pesquisa avançada por similaridade para este artigo.