Uma visão sobre a classificação de pneumonia viral e bacteriana por radiografias de tórax

Autores

  • Gabriel Martins Gomes Universidade Federal de Goiás
  • Kairo Antonio Lopes da Silva Universidade Federal de Goiás
  • Fabrizzio Soares Universidade Federal de Goiás
  • Afonso Ueslei de Fonseca Universidade Federal de Goiás
  • Deborah Fernandes Universidade Federal de Goiás

DOI:

https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1341

Palavras-chave:

Inteligência Artificial, Radiografias de tórax, Pneumonia

Resumo

Objetivo: Este estudo apresenta uma revisão sistemática sobre o uso de Inteligência Artificial (IA), especialmente Deep Learning (DL), no diagnóstico e classificação da pneumonia por radiografias de tórax (RXT). Método: O estudo segue o protocolo PRISMA conduzindo a revisão em fases de identificação, triagem e análise de artigos da base Scopus. Resultados: A revisão recuperou 25 artigos relevantes entre 121 retornados e identificou crescente interesse científico pelo tema, além de avanços no diagnóstico, com alguns estudos alcançando até 99,7% acurácia no modelo proposto. Conclusão: A detecção precoce da pneumonia é essencial para um tratamento mais eficaz, e soluções que auxiliem especialistas são fundamentais. A literatura mostra que há uma evolução constante dessas soluções, embora ainda existam gargalos importantes a serem resolvidos.

Biografias Autor

Gabriel Martins Gomes, Universidade Federal de Goiás

Graduando, Instituto de Informática, Universidade Federal de Goiás, GO, Brasil.

Kairo Antonio Lopes da Silva, Universidade Federal de Goiás

Mestrando, Instituto de Informática, Universidade Federal de Goiás, GO, Brasil.

Fabrizzio Soares, Universidade Federal de Goiás

Doutor(a),  Instituto de Informática, Universidade Federal de Goiás, GO, Brasil.

Afonso Ueslei de Fonseca, Universidade Federal de Goiás

Doutor(a),  Instituto de Informática, Universidade Federal de Goiás, GO, Brasil.

Deborah Fernandes, Universidade Federal de Goiás

Doutor(a),  Instituto de Informática, Universidade Federal de Goiás, GO, Brasil.

Referências

Narayanan, B. N., Davuluru, V. S. P., et al. (2020, March). Two-stage deep learning architecture for pneumonia detection and its diagnosis in chest radiographs. In Medical Imaging 2020: Imaging Informatics for Healthcare, Research, and Applications (Vol. 11318, pp. 130-139). SPIE.

Hu, S., Zhu, Y., Dong, D., et al. (2022). Chest Radiographs Using a Context-Fusion Convolution Neural Network (CNN): Can It Distinguish the Etiology of Community-Acquired Pneumonia (CAP) in Children?. Journal of Digital Imaging, 35(5), 1079-1090.

Ferreira, J. R., Cardenas, D. A. C., Moreno, R. A., et al. (2020, July). Multi-view ensemble convolutional neural network to improve classification of pneumonia in low contrast chest x-ray images. In 2020 42nd annual international conference of the IEEE engineering in Medicine & Biology Society (EMBC) (pp. 1238-1241). IEEE.

Acharya, A. K., & Satapathy, R. (2020). A deep learning based approach towards the automatic diagnosis of pneumonia from chest radiographs. Biomedical and Pharmacology Journal, 13(1), 449-455.

Zhao, B., Liu, H., Zheng, C., et al. (2021). Image-based deep learning in diagnosing the etiology of pneumonia on pediatric chest X-rays. Pediatric Pulmonology, 56(5), 1036-1044.

Darici, M. B., Dokur, Z., & Olmez, T. (2020). Pneumonia detection and classification using deep learning on chest x-ray images. International Journal of Intelligent Systems and Applications in Engineering, 8(4), 177-183.

Rajaraman, S., Candemir, S., Kim, I., et al.(2018). Visualization and interpretation of convolutional neural network predictions in detecting pneumonia in pediatric chest radiographs. Applied Sciences, 8(10), 1715.

Garstka, J., & Strzelecki, M. (2020). Pneumonia detection in X-ray chest images based on convolutional neural networks and data augmentation methods. In 2020 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA) (pp. 18-23). IEEE.

Polat, Ö., Ölmez, Z., & Ölmez, T. (2021). Determination of Pneumonia in X-ray Chest Images by Using Convolutional Neural Network. Turkish Journal of Electrical Engineering and Computer Sciences, 29(3), 1615-1627

Avolio, M., Fuduli, A., Vocaturo, E., et al.(2022). Multiple Instance Learning for viral pneumonia chest X-ray Classification. In SEBD (pp. 359-366).

Thanh, H. T., Yen, P. H., & Ngoc, T. B. (2021, March). Pneumonia classification in X-ray images using artificial intelligence technology. In 2020 Applying New Technology in Green Buildings (ATiGB) (pp. 25-30). IEEE.

Alsharif, R., Al-Issa, Y., Alqudah, A. M., et al.(2021). PneumoniaNet: Automated detection and classification of pediatric pneumonia using chest X-ray images and CNN approach. Electronics, 10(23), 2949.

Masud, M., Bairagi, A. K., Nahid, A. A., et al. (2021). A pneumonia diagnosis scheme based on hybrid features extracted from chest radiographs using an ensemble learning algorithm. Journal of Healthcare Engineering, 2021.

Vashisht, S., Lamba, S., Sharma, B., et al.(2023, May). Pneumonia Classification Model using Deep Learning Algorithm. In 2023 International Conference on Advancement in Computation & Computer Technologies (InCACCT) (pp. 249-253). IEEE.

Avola, D., Bacciu, A., Cinque, L., et al.(2022). Study on transfer learning capabilities for pneumonia classification in chest X-ray images. Computer Methods and Programs in Biomedicine, 221, 106833.

Khaled, M., Gaceb, D., Touazi, F., et al.(2022). Progressive and Combined Deep Transfer Learning for pneumonia diagnosis in chest X-ray images. In IDDM (pp. 160-173).

Ibrahim, A. U., Ozsoz, M., Serte, S., et al.(2021). Pneumonia classification using deep learning from chest X-ray images during COVID-19. Cognitive Computation, 1-13.

Hariri, M., & Avşar, E. (2023). COVID-19 and pneumonia diagnosis from chest X-ray images using convolutional neural networks. Network Modeling Analysis in Health Informatics and Bioinformatics, 12(1), 17.

Liu, J., Qi, J., Chen, W., et al.(2022). Multi-branch fusion auxiliary learning for the detection of pneumonia from chest X-ray images. Computers in Biology and Medicine, 147, 105732.

Sudarshan, V. K., A. Ramachandra, R., Tan, N. S. M. et al.(2022). VEntNet: Hybrid deep convolutional neural network model for automated multi‐class categorization of chest X‐rays. International Journal of Imaging Systems and Technology, 32(3), 778-797.

Nillmani, Jain, P. K., Sharma, N., et al.(2022). Four types of multiclass frameworks for pneumonia classification and its validation in X-ray scans using seven types of deep learning artificial intelligence models. Diagnostics, 12(3), 652.

Bhosale, R. D., & Yadav, D. M. (2024). Customized convolutional neural network for pulmonary multi-disease classification using chest x-ray images. Multimedia Tools and Applications, 83(6), 18537-18571.

Jha, A., John, E., & Banerjee, T. (2022, August). Transfer Learning for COVID-19 and Pneumonia Detection using Chest X-Rays. In 2022 IEEE 65th International Midwest Symposium on Circuits and Systems (MWSCAS) (pp. 1-4). IEEE.

Naseem, M. T., Hussain, T., Lee, C. S., et al.(2022). Classification and Detection of COVID-19 and Other Chest-Related Diseases Using Transfer Learning. Sensors, 22(20), 7977.

Sarkar, O., Islam, M. R., Syfullah, M. K.,et al. (2023). Multi-scale CNN: An explainable ai-integrated unique deep learning framework for lung-affected disease classification. Technologies, 11(5), 134

Publicado

2024-11-19

Como Citar

Gomes, G. M., da Silva, K. A. L., Soares, F., de Fonseca, A. U., & Fernandes, D. (2024). Uma visão sobre a classificação de pneumonia viral e bacteriana por radiografias de tórax. Journal of Health Informatics, 16(Especial). https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1341

Artigos Similares

1 2 3 4 5 6 7 > >> 

Também poderá iniciar uma pesquisa avançada de similaridade para este artigo.

Artigos mais lidos do(s) mesmo(s) autor(es)