Reconhecimento de Emoções como ferramenta de apoio às terapias personalizadas

Autores

DOI:

https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1266

Palavras-chave:

Arquiteturas Híbridas, Reconhecimento de Emoções em Expressões Faciais, Terapias Personalizadas

Resumo

Contexto: Em contextos terapêuticos, sistemas de reconhecimento de emoções podem ser uma ferramenta valiosa para pacientes com dificuldades de expressão emocional. Objetivo: Portanto, este trabalho tem como objetivo apresentar um comparativo entre arquiteturas híbridas para realizar reconhecimento de emoções em expressões faciais. Método: As arquiteturas propostas foram treinadas-validadas com a base de dados FER2013 e se baseiam na decomposição de Wavelet e em Transfer Learning. Diferentes configurações de pré-processamento dos dados também foram exploradas. Resultado: Como resultado, a arquitetura composta por uma VGG16 e um Random Forest, obteve 74,52% de acurácia no treinamento e 84,72% no teste, apenas com 27% dos atributos da VGG16. A arquitetura de DWNN, com 4 camadas e Random Forest, obteve 70,77% de acurácia no treinamento e 81,21% no teste, utilizando 34% dos atributos. Conclusão: A melhor arquitetura irá compor um sistema de reconhecimento de emoções para personalização de terapias.

Biografia do Autor

Arianne Sarmento Torcate, Universidade de Pernambuco

Mestra em Engenharia da Computação, Universidade de Pernambuco, Recife (PE), Brasil

Maíra Araújo de Santana, Universidade de Pernambuco

Doutora em Engenharia da Computação, Universidade de Pernambuco, Recife (PE), Brasil.

Juliana Carneiro Gomes, Universidade de Pernambuco

Doutora em Engenharia da Computação, Universidade de Pernambuco, Recife (PE), Brasil

Ana Clara Gomes da Silva, Universidade Federal de Pernambuco

Mestra em Engenharia Biomédica, Universidade Federal de Pernambuco, Recife (PE), Brasil

Wellington Pinheiro dos Santos, Universidade Federal de Pernambuco

Professor do departamento de Engenharia Biomédica, Universidade Federal de Pernambuco, Recife (PE), Brasil.

Referências

Adyapady, R. Rashmi; Annappa, B. A comprehensive review of facial expression recognition techniques. Multimedia Systems, v. 29, n. 1, p. 73-103, 2023. DOI: https://doi.org/10.1007/s00530-022-00984-w

Khateeb, Muhammad; Anwar, Syed Muhammad; Alnowami, Majdi. Multi-domain feature fusion for emotion classification using DEAP dataset. Ieee Access, v. 9, p. 12134-12142, 2021. DOI: https://doi.org/10.1109/ACCESS.2021.3051281

Leong, Sze Chit et al. Facial expression and body gesture emotion recognition: A systematic review on the use of visual data in affective computing. Computer Science Review, v. 48, p. 100545, 2023. DOI: https://doi.org/10.1016/j.cosrev.2023.100545

Torcate, Arianne Sarmento; De Santana, Maíra Araújo; Dos Santos, Wellington Pinheiro. Emotion Recognition to Support Personalized Therapy: An Approach Based on a Hybrid Architecture of CNN and Random Forest. In: 2023 IEEE Latin American Conference on Computational Intelligence, 2023. DOI: https://doi.org/10.1109/LA-CCI58595.2023.10409408

González, Eduardo J. Santos; Mcmullen, Kyla. The design of an algorithmic modal music platform for eliciting and detecting emotion. In: 2020 8th international winter conference on brain-computer interface (bci). IEEE, 2020. p. 1-3. DOI: https://doi.org/10.1109/BCI48061.2020.9061664

Gong, Weijun et al. Enhanced spatial-temporal learning network for dynamic facial expression recognition. Biomedical Signal Processing and Control, v. 88, p. 105316, 2024. DOI: https://doi.org/10.1016/j.bspc.2023.105316

Motadi, Lesetja et al. Ai as a novel approach for exploring ccfnas in personalized clinical diagnosis and prognosis: Providing insight into the decision-making in precision oncology. In: Artificial Intelligence and Precision Oncology: Bridging Cancer Research and Clinical Decision Support. Cham: Springer Nature Switzerland, 2023. p. 73-91. DOI: https://doi.org/10.1007/978-3-031-21506-3_4

Ferreira, Cyntia Diógenes; Torro-Alves, Nelson. Reconhecimento de emoções faciais no envelhecimento: uma revisão sistemática. Universitas Psychologica, v. 15, p. 1-12, 2016. DOI: https://doi.org/10.11144/Javeriana.upsy15-5.refe

Teh, Elizabeth J.; Yap, Melvin J.; Rickard Liow, Susan J. Emotional processing in autism spectrum disorders: Effects of age, emotional valence, and social engagement on emotional language use. Journal of autism and developmental disorders, v. 48, p. 4138-4154, 2018. DOI: https://doi.org/10.1007/s10803-018-3659-x

Bernieri, G., & Duarte, J. C. (2023). Identifying Alzheimer’s Disease Through Speech Using Emotion Recognition. Journal of Health Informatics, 15 (Especial). https://doi.org/10.59681/2175-4411.v15.

Grondhuis, Sabrina N. et al. Having difficulties reading the facial expression of older individuals? Blame it on the facial muscles, not the wrinkles. Frontiers in Psychology, v. 12, p. 620768, 2021. DOI: https://doi.org/10.3389/fpsyg.2021.620768

Sahoo, Goutam Kumar; Das, Santos Kumar; Singh, Poonam. Performance comparison of facial emotion recognition: a transfer learning-based driver assistance framework for in-vehicle applications. Circuits, Systems, and Signal Processing, v. 42, n. 7, p. 4292-4319, 2023. DOI: https://doi.org/10.1007/s00034-023-02320-7

Podder, Tanusree; Bhattacharya, Diptendu; Majumdar, Abhishek. Time efficient real time facial expression recognition with CNN and transfer learning. Sādhanā, v. 47, n. 3, p. 177, 2022. DOI: https://doi.org/10.1007/s12046-022-01943-x

De Freitas Barbosa, Valter Augusto et al. Deep-wavelet neural networks for breast cancer early diagnosis using mammary termographies. In: Deep learning for data analytics. Academic Press, 2020. p. 99-124. DOI: https://doi.org/10.1016/B978-0-12-819764-6.00007-7

Goodfellow, Ian J. et al. Challenges in representation learning: A report on three machine learning contests. In: Neural Information Processing: 20th International Conference, ICONIP 2013, Daegu, Korea, November 3-7, 2013. Proceedings, Part III 20. Springer berlin heidelberg, 2013. p. 117-124.

Mallat, Stephane G. Multifrequency channel decompositions of images and wavelet models. IEEE Transactions on Acoustics, speech, and signal processing, v. 37, p. 2091-2110, 1989. DOI: https://doi.org/10.1109/29.45554

Chawla, Nitesh V.. et al. SMOTE: synthetic minority over-sampling technique. Journal of artificial intelligence research, v. 16, p. 321-357 2002. DOI: https://doi.org/10.1613/jair.953

Kennedy, James; Eberhart, Russell. Particle swarm optimization. In: Proceedings of ICNN'95-international conference on neural networks. ieee, 1995. p. 1942-1948. DOI: https://doi.org/10.1109/ICNN.1995.488968

Yang, Lei et al. Facial expression recognition based on transfer learning and SVM. In: Journal of Physics: Conference Series. IOP Publishing, 2021. p. 01. DOI: https://doi.org/10.1088/1742-6596/2025/1/012015

Ab Wahab, Mohd Nadhir et al. Efficient net-lite and hybrid CNN-KNN implementation for facial expression recognition on raspberry pi. IEEE Access, v. 9, p. 134065-134080, 2021. DOI: https://doi.org/10.1109/ACCESS.2021.3113337

Gunawan, Teddy Surya et al. Development of video-based emotion recognition using deep learning with Google Colab. TELKOMNIKA (Telecommunication Computing Electronics and Control), v. 18, n. 5, p. 2463-2471, 2020. DOI: https://doi.org/10.12928/telkomnika.v18i5.16717

Downloads

Publicado

19-11-2024

Como Citar

Torcate, A. S., de Santana, M. A., Gomes, J. C., Silva, A. C. G. da, & Santos, W. P. dos. (2024). Reconhecimento de Emoções como ferramenta de apoio às terapias personalizadas. Journal of Health Informatics, 16(Especial). https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1266

Artigos Semelhantes

1 2 3 4 > >> 

Você também pode iniciar uma pesquisa avançada por similaridade para este artigo.

Artigos mais lidos pelo mesmo(s) autor(es)