Improving automatic classification of brain tumors with deep learning techniques
DOI:
https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1253Keywords:
Deep Learning, Automatic Classification, Brain tumorsAbstract
The accuracy in the automatic classification of brain tumors plays a crucial role in the method's reliability for healthcare applications. Classification errors can lead to inaccurate diagnoses, resulting in inappropriate and potentially harmful approaches. Objective: To propose an approach aimed at minimizing classification errors. Method: We developed a two-stage convolutional neural network model: first, four binary models for tumors with significant differentiation challenges; then, an Ensemble model for multiclass classification. Additionally, we employed a technique to interpret model predictions and identify regions of interest in medical images. Results: The proposed approach achieves an accuracy of 98%. Conclusion: This work contributes to applying deep learning in brain tumor classification, emphasizing the importance of transparent and robust approaches for precision and safety in predictions.
References
Câncer do sistema nervoso central [Internet]. Instituto Nacional de Câncer - INCA. [cited 2024 Jan 26]. Available from: https://www.gov.br/inca/pt-br/assuntos/cancer/tipos/sistema- nervoso-central
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: a Cancer Journal for Clinicians. 2021 Feb 4;71(3):209–49.
Nowosielski M, Galldiks N, Iglseder S, Kickingereder P, von Deimling A, Bendszus M, et al. Diagnostic challenges in meningioma. Neuro-Oncology [Internet]. 2017 Nov 1 [cited 2024 Jan 26];19(12):1588–98. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5716093/
Wilms G, Lammens M, Marchal G, Demaerel P, Verplancke J, Van Calenbergh F, et al. Prominent dural enhancement adjacent to nonmeningiomatous malignant lesions on contrast-enhanced MR images. AJNR American journal of neuroradiology [Internet]. 1991 [cited 2024 Jan 26];12(4):761–4. Available from: https://pubmed.ncbi.nlm.nih.gov/1882761/
Bhuvaji S. SartajBhuvaji/Brain-Tumor-Classification-DataSet [Internet]. GitHub. 2023 [cited 2024 Jan 26]. Available from: https://github.com/SartajBhuvaji/Brain-Tumor-Classification- DataSet
Cheng, J. (2017). Brain tumor dataset [Internet]. [cited 2024 Jan 26]. Available from: https://figshare.com/articles/dataset/brain_tumor_dataset/1512427. DOI: 10.6084/m9.figshare.1512427.v5
Ahmedhamada0. Br35H: Brain Tumor Detection 2020 [Internet]. [cited 2024 Jan 26]. www.kaggle.com. Available from: https://www.kaggle.com/datasets/ahmedhamada0/brain- tumor-detection
Ribeiro MT, Singh S, Guestrin C. “Why Should I Trust You?” Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD ’16 [Internet]. 2016; [cited 2024 Jan 26]. Available from: https://arxiv.org/pdf/1602.04938.pdf.
Rasool M, Ismail NA, Boulila W, Ammar A, Samma H, Yafooz WMS, et al. A Hybrid Deep Learning Model for Brain Tumour Classification. Entropy [Internet]. 2022 Jun 8;24(6):799. [cited 2024 Jan 26]. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9222774/
Rasool M, Ismail NA, Al-Dhaqm A, Yafooz WMS, Alsaeedi A. A Novel Approach for Classifying Brain Tumours Combining a SqueezeNet Model with SVM and Fine-Tuning. Electronics. 2022 Dec 29;12(1):149.
Mahajan, N., & Chavan, H. (2023). A Robust Approach for Brain Tumor Detection using Transfer Learning. Available from: https://ieeexplore.ieee.org/abstract/document/10220906?casa_token=ZmdSd_mFuJ0AAAA A:l5j9izaUrS-LA26hcIujQgSDBscVkYwPc9MsmLEmXBrS3XRWZ2- dOfnBend_8uD_RDg4scQ7gg
Gómez-Guzmán MA, Jiménez-Beristaín L, García-Guerrero EE, López-Bonilla OR, Tamayo-Perez UJ, Esqueda-Elizondo JJ, et al. Classifying Brain Tumors on Magnetic Resonance Imaging by Using Convolutional Neural Networks. Electronics [Internet]. 2023 Jan 1;12(4):955. [cited 2024 Jan 26]. Available from: https://www.mdpi.com/2079- 9292/12/4/955
Özkaraca O, Bağrıaçık Oİ, Gürüler H, Khan F, Hussain J, Khan J, et al. Multiple Brain Tumor Classification with Dense CNN Architecture Using Brain MRI Images. Life. 2023 Jan 28;13(2):349.
Nickparvar, M. (2023). Brain Tumor MRI Dataset [Internet]. [cited 2024 Jan 26]. www.kaggle.com. Available from: https://www.kaggle.com/datasets/masoudnickparvar/brain- tumor-mri-dataset/
Filatov D, Yar GNAH. Brain Tumor Diagnosis and Classification via Pre-Trained Convolutional Neural Networks [Internet]. arXiv.org. 2022. [cited 2024 Jan 26]. Available from: https://arxiv.org/abs/2208.00768
Glioma Object Detection Dataset and Pre-Trained Model by test [Internet]. Roboflow. [cited 2024 Jan 26]. Available from: https://universe.roboflow.com/test-786lz/glioma-4mibx
Meningioma Detector Object Detection Dataset and Pre-Trained Model by Kelompok BRIN [Internet]. Roboflow. [cited 2024 Jan 26]. Available from: https://universe.roboflow.com/kelompok-brin-dxxif/meningioma-detector
brain-tumor-classification Classification Dataset by opendataacademia [Internet]. Roboflow. [cited 2024 Jan 26]. Available from: https://universe.roboflow.com/opendataacademia/brain- tumor-classification-qkeoa
Desai PK. Multiple meningiomas | Radiology Case | Radiopaedia.org [Internet].
Radiopaedia. [cited 2024 Jan 26]. Available from: https://radiopaedia.org/cases/multiple- meningiomas-1
Gomes L. Glioma de Baixo Grau - Tumores Cerebrais [Internet]. Dr. Gustavo Noleto. 2022 [cited 2024 Jan 26]. Available from: https://www.neurodrgustavonoleto.com/glioma-de-baixo- grau/
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Submission of a paper to Journal of Health Informatics is understood to imply that it is not being considered for publication elsewhere and that the author(s) permission to publish his/her (their) article(s) in this Journal implies the exclusive authorization of the publishers to deal with all issues concerning the copyright therein. Upon the submission of an article, authors will be asked to sign a Copyright Notice. Acceptance of the agreement will ensure the widest possible dissemination of information. An e-mail will be sent to the corresponding author confirming receipt of the manuscript and acceptance of the agreement.