Machine learning algorithms for the prediction of bacterial resistance

Authors

  • Sofia Clara Lage Rosa Hospital Felício Rocho
  • Nathália Irffi Carvalho Hospital Felício Rocho
  • Helena Duani Universidade Federal de Minas Gerais

DOI:

https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1264

Keywords:

Intensive Care Units, Machine Learning, Microbial drug resistance

Abstract

Antibiotic resistance represents a significant concern for global health, particularly in intensive care units (ICUs), where rapid diagnosis is essential. Study objective: To test Machine Learning algorithms for predicting bacterial resistance in ICUs; Methods: Factors such as age, gender, sample type, tested antibiotic, and Gram staining of bacteria were extracted from the MIMIC-III database and used for training six machine learning models. Results: The Extreme Gradient Boosting showed the highest prediction accuracy, at 84.53%. Conclusion: Machine Learning could offer a solution for the early detection of antibiotic resistance, thereby improving patient care and antibiotic management.

Author Biographies

Sofia Clara Lage Rosa, Hospital Felício Rocho

Hospital Felício Rocho, Departamento de Infectologia, Belo Horizonte (MG), Brasil.

Nathália Irffi Carvalho, Hospital Felício Rocho

Hospital Felício Rocho, Departamento de Infectologia, Belo Horizonte (MG), Brasil.

Helena Duani, Universidade Federal de Minas Gerais

Universidade Federal de Minas Gerais, Departamento de Clínica Médica, Belo Horizonte (MG), Brasil.

References

IACG. No Time To Wait: Securing the Future From Drug-Resistant Infections Report To the Secretary-General of the United Nations [Internet]. World Health Organization. 2019. Available from: https://www.who.int/antimicrobial-resistance/interagency-coordination- group/IACG_final_report_EN.pdf?ua=1

Murray CJ, Ikuta KS, Sharara F, Swetschinski L, Robles Aguilar G, Gray A, et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet [Internet]. 2022 Feb 12 [cited 2022 Sep 10];399(10325):629–55. Available from: http://www.thelancet.com/article/S0140673621027240/fulltext

March-Rosselló GA. Rapid methods for detection of bacterial resistance to antibiotics. Enfermedades Infecc y Microbiol Clínica (English Ed [Internet]. 2017 Mar 1 [cited 2022 Sep 10];35(3):182–8. Available from: https://www.elsevier.es/en-revista-enfermedades- infecciosas-microbiologia-clinica-english-428-articulo-rapid-methods-for-detection- bacterial-S2529993X17300606

Evans L, Rhodes A, Alhazzani W, Antonelli M, Coopersmith CM, French C, et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock 2021. Crit Care Med [Internet]. 2021 Nov 1 [cited 2022 Sep 10];49(11):E1063–143. Available from: https://journals.lww.com/ccmjournal/Fulltext/2021/11000/Surviving_Sepsis_Campaign I nternational.21.aspx

Anahtar MN, Yang JH, Kanjilal S. Applications of Machine Learning to the Problem of Antimicrobial Resistance: an Emerging Model for Translational Research. J Clin Microbiol [Internet]. 2021 Jun 18 [cited 2022 Apr 15];59(7):e0126020. Available from: https://journals.asm.org/journal/jcm

Feretzakis G, Sakagianni A, Loupelis E, Kalles D, Skarmoutsou N, Martsoukou M, et al. Machine Learning for Antibiotic Resistance Prediction: A Prototype Using Off-the-Shelf Techniques and Entry-Level Data to Guide Empiric Antimicrobial Therapy. Healthc Inform Res [Internet]. 2021 Jul 1 [cited 2022 Apr 16];27(3):214. Available from:

/pmc/articles/PMC8369050/

Feretzakis G, Loupelis E, Sakagianni A, Kalles D, Martsoukou M, Lada M, et al. Using Machine Learning Techniques to Aid Empirical Antibiotic Therapy Decisions in the Intensive Care Unit of a General Hospital in Greece. Antibiot 2020, Vol 9, Page 50

Published

2024-11-19

How to Cite

Rosa, S. C. L., Carvalho, N. I., & Duani, H. (2024). Machine learning algorithms for the prediction of bacterial resistance. Journal of Health Informatics, 16(Especial). https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1264

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.