Intersections between artificial intelligence (AI) and sepsis: an integrative review

Authors

  • André Luís Fernandes dos Santos Fundação Instituição de Educação de Barueri

DOI:

https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1268

Keywords:

Algorithms, Machine Learning, Sepsis

Abstract

Objectives: To conduct an integrative literature review to investigate the impact of artificial intelligence (AI) on the clinical management of sepsis. Methods: Databases such as PubMed/MEDLINE and LILACS were utilized, and the search for articles was guided by the question: what is the contribution of AI to the detection and/or treatment of sepsis? Results: Of the 11 selected articles, the fundamental role of Machine Learning in developing predictive models for early sepsis detection was highlighted, resulting in improvements in interventions and prognoses. Additionally, AI was applied in patient monitoring systems, such as the Robô Laura™, optimizing clinical processes. Conclusions: AI plays a significant role in advancing the clinical management of sepsis, offering innovative perspectives for diagnosis, treatment, and prognosis.

Author Biography

André Luís Fernandes dos Santos, Fundação Instituição de Educação de Barueri

Fundação Instituição de Educação de Barueri, Análises Clínicas, Barueri (SP), Brasil.

References

Wu M, Gu R, Wei, Ji. Artificial intelligence for clinical decision support in sepsis. Frontiers in Medicine. 2021 May; 8(6654640): 1-9. doi:10.3389/fmed.2021.665464

Taniguchi LU, Bierrenbach AL, Toscano CM, Schettino GPP, Azevedo LCP. Sepsis-related deaths in Brazil: an analysis of the national mortality registry from 2002 to 2010. Crit Care. 2014;18(6):608.doi:10.1186/s13054-014-0608-8

Fleischman C, Scherag A, Adhikari NK, Hartog CS, Tsaganos T, Schlattmann P, et al. Current estimates and limitations assessment of global incidence and mortality of hospitaltreated sepsis.. Am J Respir Crit Care Med. 2016; 1; 193(3):259-72.doi: 10.1164/rccm.201504-0781OC

Gonçalves LS, Amaro ML de M, Romero A de LM, Schamne FK, Fressatto JL, Bezerra CW. Implementation of an Artificial Intelligence Algorithm for sepsis detection. Rev Bras Enferm. 2020; 73(3):1-5.doi:10.1590/0034-7167-2018-0421

McCarthy J, Minsky M, Rochester N, Shannon C. A proposal for the Dartmouth summer research project on artificial intelligence. AI Magazine. 2006; 27(4):12. doi:10.1609/aimag. v27i4.1904

Greco M, Caruso PF, Cecconi M. Artificial intelligence in the intensive care unit. Semin Resp Crit Care. 2021; 42:2–9. doi: 10.1055/s-0040-1719037

Soares CR, Peres HHC, de Oliveira NB. Processo de Enfermagem: revisão integrativa sobre as contribuições da informática. J Health Inform. 2018;10(4):113-118.

Kalil AJ, Dias VM de CH, Rocha C da C, Morales HMP, Fressatto JL, Faria RA de. Sepsis risk assessment: a retrospective analysis after a cognitive risk management robot (Robot Laura®) implementation in a clinical-surgical unit. Res Biomed Eng. 2018;34(4):310–316. doi.org/10.1590/2446-4740.180021

van Doorn WPTM, Stassen PM, Borggreve HF, Schalkwijk MJ, Stoffers J, Bekers O, et al. A comparison of machine learning models versus clinical evaluation for mortality prediction in patients with sepsis. PLoS ONE. 2021; 16(1): 1-15. https://doi.org/10.1371/journal.

pone.0245157

Kudo D, Goto T, Uchimido R, Hayakawa M, Yamakawa K, Abe T, Shiraishi A, Kushimoto S. Coagulation phenotypes in sepsis and effects of recombinant human thrombomodulin: an analysis of three multicentre observational studies. Crit Care. 2021; 25(1):1-11. doi: 10.1186/s13054-021-03541-5.

Scherer JS, Pereira JS, Debastiani MS, Bica CG. Beyond technology: Can artificial intelligence support clinical decisions in the prediction of sepsis? Rev Bras Enferm. 2022; 75(5):1-6. doi: 10.1590/0034-7167-2021-0586.

Wang D, Li J, Sun Y, Ding X, Zhang X, Liu S, Han B, Wang H, Duan X, Sun T. A Machine Learning Model for Accurate Prediction of Sepsis in ICU Patients. Front Public Health. 2021; 9:754348. doi: 10.3389/fpubh.2021.754348.

Hong X, Liu G, Chi Z, Yang T, Zhang Y. Predictive model for urosepsis in patients with Upper Urinary Tract Calculi based on ultrasonography and urinalysis using artificial intelligence learning. Int Braz J Urol. 2023;49(2):221–32. doi.org/10.1590/S1677-5538.

Li Y, Wu Y, Gao Y, Niu X, Li J, Tang M, Fu C, Qi R, Song B, Chen H, Gao X, Yang Y, Guan X. Machine-learning based prediction of prognostic risk factors in patients with invasive candidiasis infection and bacterial bloodstream infection: a singled centered retrospective study. BMC Infect Dis. 2022; 22(1):1-11. doi: 10.1186/s12879-022-07125-8.

Liaw SY, Tan JZ, Bin Rusli KD, Ratan R, Zhou W, Lim S, Lau TC, Seah B, Chua WL. Artificial Intelligence Versus Human-Controlled Doctor in Virtual Reality Simulation for Sepsis Team Training: Randomized Controlled Study. J Med Internet Res. 2023;25: 1-9. doi: 10.2196/47748.

Liu F, Yao J, Liu C, Shou S. Construction and validation of machine learning models for sepsis prediction in patients with acute pancreatitis. BMC Surg. 2023; 23(1): 1-13. doi: 10.1186/s12893-023-02151-y.

Pan X, Xie J, Zhang L, Wang X, Zhang S, Zhuang Y, Lin X, Shi S, Shi S, Lin W. Evaluate prognostic accuracy of SOFA component score for mortality among adults with sepsis by machine learning method. BMC Infect Dis. 2023; 23(1): 1-8. doi: 10.1186/s12879-023-08045-x.

She H, Du Y, Du Y, Tan L, Yang S, Luo X, Li Q, Xiang X, Lu H, Hu Y, Liu L, Li T. Metabolomics and machine learning approaches for diagnostic and prognostic biomarkers screening in sepsis. BMC Anesthesiol. 2023;23(1): 1-13. doi: 10.1186/s12871-023-02317-4.

Published

2024-11-19

How to Cite

dos Santos, A. L. F. (2024). Intersections between artificial intelligence (AI) and sepsis: an integrative review. Journal of Health Informatics, 16(Especial). https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1268

Similar Articles

<< < 1 2 3 4 5 6 > >> 

You may also start an advanced similarity search for this article.