Artificial intelligence in dentistry education: a bibliometric analysis
DOI:
https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1301Keywords:
Dentistry, Teaching, Artificial intelligenceAbstract
Objective: To conduct a bibliometric analysis on the use of artificial intelligence in dental education, aiming to identify gaps in the literature and synthesize current findings in the field. Method: This is an exploratory and descriptive bibliometric research. The WoS and Scopus databases were selected for the study and subsequent data analysis. Articles in editorial edition, letters, and book chapters were excluded. Results: A total of 93 records were obtained, published in 49 journals indexed in the databases, with 314 authors affiliated with 199 institutions responsible for publications in 34 different countries. After removing duplicates, 74 references were included for full analysis. All selected articles were analyzed according to pre-established bibliometric data. Conclusion: It is crucial to consider the scarcity of scientific works addressing this topic and the continuous need for research to maximize the benefits of its incorporation into the academic environment.
References
Klaassen H, Ashida S, Comnick CL, Xie XJ, Smith BM, Tabrizi M, et al. Covid-19 pandemic and its impact on dental students: A multi-institutional survey. J Dent Educ. 2021 jul; 85(7):1280-1286. DOI: https://doi.org/10.1002/jdd.12597
Turing AM. Computing machinery and intelligence. Mind. 1950; 49:433-446. DOI: https://doi.org/10.1093/mind/LIX.236.433
Horie Y, Yoshio T, Aoyama K, Yoshimizu S, Horiuchi Y, Ishiyama A, et al. Diagnostic outcomes of esophageal cancer by artificial intelligence using convolutionalneural networks. Gastrointest Endosc. 2019 jan; 89(1):25-32. DOI: https://doi.org/10.1016/j.gie.2018.07.037
Iroda A, Diyora A. Artificial intelligence in medicine: benefits and drawbacks. Br View. 2021; 6(1):55-59.
Lee JH, Ha EJ, Kim JH. Application of deep learning to thediagnosis of cervical lymph node metastasis from thyroid cancerwith CT. Eur Radiol. 2019 oct; 29(10)5452-5457. DOI: https://doi.org/10.1007/s00330-019-06098-8
Carrillo-Perez F, Pecho OE, Morales JC, Paravina RD, Bona AD, Ghinea R, et al. Applications of artificial intelligence in dentistry: A comprehensive review. J Esthet and Restor Dent. 2022 jan; 34(1):259-280. DOI: https://doi.org/10.1111/jerd.12844
Khanagar SB, Al-Ehaideb A, Maganur PC, Vishwanathaiah S, Patil S, Baeshen H, et al. Developments, application, and performance of artificial intelligence indentistry - A systematic review. J Dent Sci. 2021 jan; 16(1):508-522. DOI: https://doi.org/10.1016/j.jds.2020.06.019
Shan T, Tay FR, Gu L. Application of artificial intelligence indentistry. J Dent Res. 2021 mar; 100(3): 232-244. DOI: https://doi.org/10.1177/0022034520969115
Alauddin MS, Baharuddin AS, Ghazali MIM. The modern and digital transformation of oral health care: A mini review. Healthcare. 2021 jan; 9(2):118. DOI: https://doi.org/10.3390/healthcare9020118
Imran E, Adanir N, Khurshid Z. Significance of haptic and virtual reality simulation (VRS) in the dental education: A review of literature. Appl Sci. 2021; 11(21):10196. DOI: https://doi.org/10.3390/app112110196
Lillehaug SI, Lajoie SP. AI in medical education-another grand challenge for medical informatics. Artif Intell Med. 1998 mar; 12(3):197-225. DOI: https://doi.org/10.1016/S0933-3657(97)00054-7
Zitzmann NU, Matthisson L, Ohla H, Joda T. Digital undergraduate education in dentistry: A systematic review. Int J Environ Res Public Health. 2020 may; 17(9)3269. DOI: https://doi.org/10.3390/ijerph17093269
Hicks D, Wouters P, Waltman L, Rijcke S, Rafols I. Bibliometrics: the Leiden Manifesto for research metrics. Nature. 2015 apr; 520:429-431. DOI: https://doi.org/10.1038/520429a
Mukherjee D, Lim WM, Kumar S, Donthu N. Guidelines for advancing theory and practice through bibliometric research. J Bus Res. 2022 sep; 148:101-115. DOI: https://doi.org/10.1016/j.jbusres.2022.04.042
Liu X, Zhao S, Tan L, Tan Y, Wang Y, Ye Z, et al. Frontier and hot topics in electrochemiluminescence sensing technology based on CiteSpace bibliometric analysis. Biosens Bioelectron. 2022 apr; 201:113932. DOI: https://doi.org/10.1016/j.bios.2021.113932
Yeung AWK. Comparison between Scopus, Web of Science, PubMed and publishers for mislabelled review papers. Curr Sci. 2019 jun; 116(11):1909-1914. DOI: https://doi.org/10.18520/cs/v116/i11/1909-1914
Kishimoto T, Goto T, Matsuda T, Iwawaki Y, Ichikawa T. Application of artificial intelli-gence in the dental field: A literature review. J Prosthodont Res. 2022 jan; 66(1):19-28. DOI: https://doi.org/10.2186/jpr.JPR_D_20_00139
Schwendicke F, Samek W, Krois J. Artificial intelligence in dentistry: Chances and challenges. J Dent Res. 2020 jul; 99(7):769-774. DOI: https://doi.org/10.1177/0022034520915714
Rhienmora P, Haddawy P, Suebnukarn S, Dailey MN. Intelligent dental training simulator with objective skill assessment and feedback. Artif Intell Med. 2011 jun; 52(2):115-21. DOI: https://doi.org/10.1016/j.artmed.2011.04.003
Lee J-H, Yu H-J, Kim M-j, Kim J-W, Choi J. Automated cephalometric landmark detection with confidence regions using Bayesian convolutional neural networks. BMC Oral Health. 2020 out; 20(1): 270. DOI: https://doi.org/10.1186/s12903-020-01256-7
Thurzo A, Strunga M, Urban R, Surovková J, Afrashtehfar KI. Impact of artificial intelligence on dental education: A review and guide for curriculum update. Educ Sci. 2023 jan; 13(150):1-14. DOI: https://doi.org/10.3390/educsci13020150
Speight PM, Elliott AE, Jullien JÁ; Downer MC, Zakzrewska JM. The use of artificial intelligence to identify people at risk of oral cancer and precancer. Br Dent J. 1995 nov; 179:382-387. DOI: https://doi.org/10.1038/sj.bdj.4808932
Rhienmora P, Haddawy P, Khanal P, Suebnukarn S, Dailey MN. A virtual reality simulator for teaching and evaluating dental procedures. Methods Inf Med. 2010 jun; 49(4):396-405. DOI: https://doi.org/10.3414/ME9310
Thurzo A, Urbanová W, Novák B, Czako L, Siebert T, Stano P, et al. Where is the artificial intelligence applied in dentistry? Systematic review and literature analysis. Healthcare (Basel). 2022 jul; 10(7):1269. DOI: https://doi.org/10.3390/healthcare10071269
Monterubbianesi R, Tosco V, Vitiello F, Orilisi G, Fraccastoro F, Putignano A, et al. Augmented, virtual and mixed reality in dentistry: A narrative review on the existing platforms and future challenges. Appl Sci. 2022 jan; 12(2):877. DOI: https://doi.org/10.3390/app12020877
Sallam M, Salim NA, Barakat M, Al-Tammemi AB. ChatGPT applications in medical, dental, pharmacy, and public health education: A descriptive study highlighting the advantages and limitations. Narra J. 2023 abr; 3(1):e103. DOI: https://doi.org/10.52225/narra.v3i1.103
Yüzbaşıoğlu E. Attitudes and perceptions of dental students towards artificial intelligence. J Dent Educ. 2021 jan; 85(1):60-68. DOI: https://doi.org/10.1002/jdd.12385
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Submission of a paper to Journal of Health Informatics is understood to imply that it is not being considered for publication elsewhere and that the author(s) permission to publish his/her (their) article(s) in this Journal implies the exclusive authorization of the publishers to deal with all issues concerning the copyright therein. Upon the submission of an article, authors will be asked to sign a Copyright Notice. Acceptance of the agreement will ensure the widest possible dissemination of information. An e-mail will be sent to the corresponding author confirming receipt of the manuscript and acceptance of the agreement.