Evaluation of transfer learning for brain tumor detection in medical images

Authors

  • André Gonçalves Jardim UFCSPA
  • Carla Diniz Lopes Becker UFCSPA
  • Thatiane Alves Pianoski UFCSPA
  • Viviane Rodrigues Botelho UFCSPA

DOI:

https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1302

Keywords:

Transfer Learning, Convolutional Neural Network, Brain Tumor

Abstract

Objective: With the increased feasibility of applying convolutional neural networks (CNNs), the goal was to evaluate the use of this technology for detecting brain tumors in computerized magnetic resonance images. Method: Two distinct CNN models were developed, one using transfer learning and the other without, to classify the occurrence of brain tumors. Results: The model without transfer learning achieved an accuracy of 99.67%, with a sensitivity of 100% and specificity of 99.34%. The model using transfer learning achieved an accuracy of 98%, with a sensitivity of 98.32% and specificity of 97.69%. Conclusion: This study highlights the efficacy of CNNs in detecting brain tumors, suggesting the use of intelligent systems as auxiliary tools.

Author Biographies

André Gonçalves Jardim, UFCSPA

Master’s Student, Federal University of Health Sciences of Porto Alegre – UFCSPA, Porto Alegre (RS), Brazil.

Carla Diniz Lopes Becker, UFCSPA

Ph.D., Federal University of Health Sciences of Porto Alegre – UFCSPA, DECESA, Porto Alegre (RS), Brazil.

Thatiane Alves Pianoski, UFCSPA

Ph.D., Federal University of Health Sciences of Porto Alegre – UFCSPA, DECESA, Porto Alegre (RS), Brazil.

Viviane Rodrigues Botelho, UFCSPA

Ph.D., Federal University of Health Sciences of Porto Alegre – UFCSPA, DECESA, Porto Alegre (RS), Brazil.

References

Rethemiotaki I. Brain tumour detection from magnetic resonance imaging using convolutional neural networks. Contemp Oncol [Internet]. 2023 [cited 2024 Apr 21];27(4):230. Available from: /pmc/articles/PMC10883197/ DOI: https://doi.org/10.5114/wo.2023.135320

Fritz A, Percy C, Jack A. International Classification of Diseases for Oncology. Third. Vol. 1. Switzerland: World Health Organization; 2000. 0–222 p.

Tandel GS, Biswas M, Kakde OG, Tiwari A, Suri HS, Turk M, et al. A review on a deep learning perspective in brain cancer classification. Cancers (Basel) [Internet]. 2019 Jan 18 [cited 2021 Dec 12];11(1):111. Available from: https://www.mdpi.com/2072-6694/11/1/111/htm DOI: https://doi.org/10.3390/cancers11010111

Kang J, Ullah Z, Gwak J. Mri-based brain tumor classification using ensemble of deep features and machine learning classifiers. Sensors [Internet]. 2021 Mar 22 [cited 2021 Dec 12];21(6):1–21. Available from: https://www.mdpi.com/1424-8220/21/6/2222/htm

Patel AP, Fisher JL, Nichols E, Abd-Allah F, Abdela J, Abdelalim A, et al. Global, regional, and national burden of brain and other CNS cancer, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol [Internet]. 2019 Apr 1 [cited 2024 Apr 22];18(4):376–93. Available from: https://pubmed.ncbi.nlm.nih.gov/30797715/

Naseer A, Yasir T, Azhar A, Shakeel T, Zafar K. Computer-Aided Brain Tumor Diagnosis: Performance Evaluation of Deep Learner CNN Using Augmented Brain MRI. Int J Biomed Imaging. 2021;2021.

Fernandes SL, Tanik UJ, Rajinikanth V, Karthik KA. A reliable framework for accurate brain image examination and treatment planning based on early diagnosis support for clinicians. Neural Comput Appl [Internet]. 2020 Oct 1 [cited 2024 Apr 22];32(20):15897–908. Available from: https://link.springer.com/article/10.1007/s00521-019-04369-5 DOI: https://doi.org/10.1007/s00521-019-04369-5

Naseer A, Yasir T, Azhar A, Shakeel T, Zafar K. Computer-Aided Brain Tumor Diagnosis: Performance Evaluation of Deep Learner CNN Using Augmented Brain MRI. Int J Biomed Imaging. 2021;2021. DOI: https://doi.org/10.1155/2021/5513500

Naseer A, Zafar K. Comparative Analysis of Raw Images and Meta Feature based Urdu OCR using CNN and LSTM. International Journal of Advanced Computer Science and Applications. 2018;9(1):419–24. DOI: https://doi.org/10.14569/IJACSA.2018.090157

Naseer A, Zafar K. Meta features-based scale invariant OCR decision making using LSTM-RNN. Comput Math Organ Theory [Internet]. 2019 Jun 1 [cited 2024 Apr 22];25(2):165–83. Available from: https://link.springer.com/article/10.1007/s10588-018-9265-9 DOI: https://doi.org/10.1007/s10588-018-9265-9

Papageorgiou V. Brain tumor detection based on features extracted and classified using a low-complexity neural network. Traitement du Signal. 2021 Jun 1;38(3):547–54.

Papageorgiou EI, Spyridonos PP, Glotsos DT, Stylios CD, Ravazoula P, Nikiforidis GN, et al. Brain tumor characterization using the soft computing technique of fuzzy cognitive maps. Applied Soft Computing Journal. 2008 Jan 1;8(1):820–8. DOI: https://doi.org/10.1016/j.asoc.2007.06.006

Deepak S, Ameer PM. Brain tumor classification using deep CNN features via transfer learning. Comput Biol Med [Internet]. 2019 Aug 1 [cited 2024 Apr 28];111. Available from: https://pubmed.ncbi.nlm.nih.gov/31279167/ DOI: https://doi.org/10.1016/j.compbiomed.2019.103345

Wu M, Liu Q, Yan C, Sen G. Multi-Classification of Brain Tumors on Magnetic Resonance Images Using an Ensemble of Pre-Trained Convolutional Neural Networks. Curr Med Imaging [Internet]. 2022 Apr 18 [cited 2024 Apr 28];19(1):65–76. Available from: https://pubmed.ncbi.nlm.nih.gov/35430973/ DOI: https://doi.org/10.2174/1573405618666220415122843

Swati ZNK, Zhao Q, Kabir M, Ali F, Ali Z, Ahmed S, et al. Brain tumor classification for MR images using transfer learning and fine-tuning. Comput Med Imaging Graph [Internet]. 2019 Jul 1 [cited 2024 Apr 28];75:34–46. Available from: https://pubmed.ncbi.nlm.nih.gov/31150950/ DOI: https://doi.org/10.1016/j.compmedimag.2019.05.001

Kang J, Ullah Z, Gwak J. Mri-based brain tumor classification using ensemble of deep features and machine learning classifiers. Sensors. 2021 Mar 22;21(6):1–21. DOI: https://doi.org/10.3390/s21062222

Br35H :: Detecção de tumor cerebral 2020 | Kaggle [Internet]. [cited 2021 Dec 12]. Available from: https://www.kaggle.com/ahmedhamada0/brain-tumor-detection

Papageorgiou V. Brain tumor detection based on features extracted and classified using a low-complexity neural network. Traitement du Signal. 2021 Jun 1;38(3):547–54. DOI: https://doi.org/10.18280/ts.380302

Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization. Int J Comput Vis [Internet]. 2016 Oct 7 [cited 2024 May 27];128(2):336–59. Available from: http://arxiv.org/abs/1610.02391 DOI: https://doi.org/10.1007/s11263-019-01228-7

Published

2024-11-19

How to Cite

Jardim, A. G., Becker, C. D. L., Pianoski, T. A., & Botelho, V. R. (2024). Evaluation of transfer learning for brain tumor detection in medical images. Journal of Health Informatics, 16(Especial). https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1302

Similar Articles

<< < 17 18 19 20 21 22 23 24 25 > >> 

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)