Development and evaluation of an architecture for remote health monitoring using fog and cloud Computing
DOI:
https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1335Keywords:
Fog Computing, Remote Health Monitoring, Internet of ThingsAbstract
The growing demand for health monitoring solutions in outdoor environments such as beaches, stadiums, and urban centers highlights the need for efficient and resilient architectures in the context of the Internet of Things. Objectives: To propose a layered architecture for health monitoring in outdoor environments, combining fog and cloud computing for efficient and reliable collection and analysis of health data. Methods: Monitoring is conducted through smartbands and smartphones, utilizing fog computing at the network edge to mitigate connection instabilities. Results: The proposed architecture ensures data integrity even in environments with unstable networks. Conclusion: The solution demonstrates effectiveness in health monitoring in outdoor environments, offering a reliable solution for real-time data collection and analysis despite potential communication network instabilities.
References
Manyika, J., Chui, M., Bisson, P., Woetzel, J., Dobbs, R., Bughin, J., & Aharon, D. (2015). Unlocking the potential of the internet of things. McKinsey Global Institute, 1, 1–2.
Farahani, B., Firouzi, F., Chang, V., Badaroglu, M., Constant, N., & Mankodiya, K. (2018). Towards fog-driven iot ehealth: Promises and challenges of iot. Future Generation Computer Systems, 78(Pt 2), 659-676.
Do Nascimento, M. G., Iorio, G., Thomé, T. G., Medeiros, A. A., Mendonça, F. M., Campos, F. A., ... & Dantas, M. A. (2020). Covid-19: A digital transformation approach to a public primary healthcare environment. In 2020 IEEE Symposium on Computers and Communications (ISCC).
Vilela, P. H., Rodrigues, J. J., Vilela, L. R., Mahmoud, M. M., & Solic, P. (2018). A critical analysis of healthcare applications over fog computing infrastructures. In 2018 3rd International Conference on Smart and Sustainable Technologies (SpliTech), 1–5.
Ahmadi, Z., Haghi Kashani, M., Nikravan, M., & Mahdipour, E. (2021). Fog-based healthcare systems: A systematic review. Multimedia Tools and Applications, 69(1), 1–40.
Alshammari, H. H. (2023). The internet of things healthcare monitoring system based on MQTT protocol. Alexandria Engineering Journal, 69, 275–287.
Tardieu, H., Daly, D., Esteban-Lauzán, J., Hall, J., & Miller, G. (2020). Case study 2: the digital transformation of health care. -, -, 237–244.
Ahmed Kamal, M., Ismail, Z., Shehata, I. M., Djirar, S., Talbot, N. C., Ahmadzadeh, S., ... & Kaye, A. D. (2023). Telemedicine, e-health, and multi-agent systems for chronic pain management. Clinics and Practice, 13(2), 470–482.
Mendonça, F. M., Dantas, M. A., Fortunato, W. T., Oliveira, J. F., Souza, B. C., & Filgueiras, M. Q. (2022). Wearable devices in healthcare: Challenges, current trends and a proposition of affordable low cost and scalable computational environment of internet of things. In Brazilian Congress on Biomedical Engineering, -, 2022. Proceedings... [S.l.: s.n.], 1301–1308.
Júnior, C. A. M., Mendonça, F. M., Dantas, M. A. R., De Carvalho Hilgemberg, A. L., De Medeiros, Á. A. M., Oliveira, J. F. S., ... & Thomé, T. G. (2021). Presenting epidor: a management information system to support pain medicine. Brazilian Journal of Development, 7(2), 20539–20550.
Babar, K., & Ali Shah, M. (2022). Scalable and sustainable mist computing-based architecture for internet of health things. In Competitive Advantage in the Digital Economy (CADE 2022), 1., 2022. Proceedings... [S.l.: s.n.], 111–116.management information system to support pain medicine. Brazilian Journal of Development, 7(2), 20539–20550.
Stavrinides, G. L., & Karatza, H. D. (2019). A hybrid approach to scheduling real-time IoT workflows in fog and cloud environments. Multimedia Tools and Applications, 78(17), 24639–24655.
Bansal, S., & Aggarwal, H. 2022. Priority-based cloud-fog architecture for smart healthcare systems. IEEE International Conference on Current Development in Engineering and Technology, 1, 1–7.
Fernando, N., Loke, S. W., & Rahayu, W. 2013. Mobile cloud computing: A survey. Future Generation Computer Systems, 29(1), 84–106.
Gomes, E., Zanatta, R., Plentz, P., Rolt, C. D., & Dantas, M. 2020. An approach of time constraint of data intensive scalable in e-health environment. In International Conference on P2P, Parallel, Grid, Cloud and Internet Computing, 1., 2020, 158–169.
Ni, J., Zhang, K., Lin, X., & Shen, X. 2017. Securing fog computing for internet of things applications: Challenges and solutions. IEEE Communications Surveys & Tutorials, 20(1), 601–628.
Ilyas, A., Alatawi, M., Hamid, Y., Mahfooz, S., Zada, I., Gohar, N., & Shah, M. A. 2022. Software architecture for pervasive critical health monitoring systems using fog computing. Journal of Cloud Computing, 2022, 84.
Sharma, P., & Gupta, P. K. 2023. Optimization of IoT-Fog Network Path and fault Tolerance in Fog Computing based Environment. Procedia Computer Science, 218, 2494–2503.
Luan, T., Gao, L., Li, Z., Xiang, Y., & Sun, L. 2015. Fog Computing: Focusing on Mobile Users at the Edge. Comput. Sci.
Shaji, S., Sankaran, R., Guntha, R., & Pathinarupothi, R. K. 2023. A Real-time IoMT Enabled Remote Cardiac Rehabilitation Framework. In 2023 15th International Conference on COMmunication Systems NETworkS(COMSNETS), 153–158.
Al-Joboury, I., & Al-Hemiary, E. 2018. Performance Analysis of Internet of Things Protocols Based Fog/Cloud over High Traffic. Journal of Fundamental and Applied Sciences, 10, 176–181.
Gomes, E., Zanatta, R., Plentz, P., De Rolt, C., & Dantas, M. 2020. An Approach of Time Constraint of Data Intensive Scalable in e-Health Environment. In International Conference on P2P, Parallel, Grid, Cloud and Internet Computing. Springer, 158–169.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Submission of a paper to Journal of Health Informatics is understood to imply that it is not being considered for publication elsewhere and that the author(s) permission to publish his/her (their) article(s) in this Journal implies the exclusive authorization of the publishers to deal with all issues concerning the copyright therein. Upon the submission of an article, authors will be asked to sign a Copyright Notice. Acceptance of the agreement will ensure the widest possible dissemination of information. An e-mail will be sent to the corresponding author confirming receipt of the manuscript and acceptance of the agreement.