Localization and classification of epiphyses in carpal radiographs using YOLO models

Authors

  • Guilherme Nique da Silva UFCSPA
  • Viviane Rodrigues Botelho UFCSPA
  • Thatiane Alves Pianoschi UFCSPA
  • Carla Diniz Lopes Becker UFCSPA

DOI:

https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1336

Keywords:

bone age, epiphysis, Object detection

Abstract

Objective: This study proposes the development of a model for detecting epiphyses in X-ray images using machine learning models. Methods: We describe the process of dataset acquisition and conduct tests with models such as YOLOv5, YOLOv8, and Faster R-CNN. Results: The YOLOv8 model achieved a 1% error rate on the DHA dataset, while the YOLOv5 model achieved around 5%. Conclusion: After a comparative analysis, YOLOv8 was selected as the ideal model for final epiphyses detection.

Author Biographies

Guilherme Nique da Silva, UFCSPA

Master’s Student, Federal University of Health Sciences of Porto Alegre – UFCSPA, Porto Alegre (RS), Brazil.

Viviane Rodrigues Botelho, UFCSPA

Ph.D., Federal University of Health Sciences of Porto Alegre – UFCSPA, DECESA, Porto Alegre (RS), Brazil.

Thatiane Alves Pianoschi, UFCSPA

Ph.D., Federal University of Health Sciences of Porto Alegre – UFCSPA, DECESA, Porto Alegre (RS), Brazil.

Carla Diniz Lopes Becker, UFCSPA

Ph.D., Federal University of Health Sciences of Porto Alegre – UFCSPA, DECESA, Porto Alegre (RS), Brazil.

References

Hossain A, Islam MT, Almutairi AF. A deep learning model to classify and detect brain abnormalities in portable microwave based imaging system. 2022. Scientific Reports.

Jones J, Greulich and Pyle method. 2020.

Koitka S, Kim MS. Qu M. Fischer A, Friedrich CM, Nensa F. Mimicking the radiologists’ workflow: Estimating pediatric hand bone age with stacked deep neural networks. 2020. Medical Image Analysis 64.

Pinto, Vanessa C. Relação da idade óssea e marcadores hormonais com a capacidade física de adolescentes. 2017. J Hum Growth Dev.

Redmon J, Divvala S, Girshick R, Farhadi A. You Only Look Once: Unified, Real-Time Object Detection. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016. (CVPR).

Schneider, R, Irigaray, T. Envelhecimento na atualidade: aspectos cronológicos, biológicos, psicológicos e sociais. Estudos de psicologia. 2008.

Chollet, F. Deep Learning with Python. 2017.

Trombetta GBW, Fröhlich W da R, Rigo SJ, Rodrigues CA. Aplicação de Deep Learning para Diagnóstico de Pneumonia Causada por COVID -19 a partir de Imagens de Raio X. J Health Inform [Internet]. 15º de março de 2021 [citado 21º de maio de 2024];12. Disponível em: https://jhi.sbis.org.br/index.php/jhi-sbis/article/view/828

https://www.rsna.org/rsnai/ai-image-challenge/rsna-pediatric-bone-age-challenge-2017.

Koitka S, Demircioglu A, Kim MS, Friedrich CM, Nensa F.Ossification area localization in pediatric hand radiographs using deep neural networks for object detection. 2018.

https://ipilab.usc.edu/research/baaweb/.

Published

2024-11-19

How to Cite

da Silva, G. N., Botelho, V. R., Pianoschi, T. A., & Becker, C. D. L. (2024). Localization and classification of epiphyses in carpal radiographs using YOLO models. Journal of Health Informatics, 16(Especial). https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1336

Similar Articles

1 2 3 4 > >> 

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)