Chikungunya diagnosis using artificial intelligence and medical record data

Authors

  • Cecilia Cordeiro da Silva Universidade Federal de Pernambuco
  • Ana Clara Gomes da Silva Universidade de Pernambuco
  • Clarisse Lins de Lima Universidade Federal de Pernambuco
  • Maíra Araújo de Santana Universidade Federal de Pernambuco
  • Juliana Carneiro Gomes Universidade Federal de Pernambuco
  • Giselle Machado Magalhães Moreno Universidade Federal de Pernambuco
  • Karla Amorim Sancho Universidade Federal de Pernambuco
  • Heloísa Ramos Lacerda de Melo Universidade Federal de Pernambuco
  • Marcela Franklin Salvador de Mendonça Universidade Federal de Pernambuco
  • Wellington Pinheiro dos Santos Universidade Federal de Pernambuco

DOI:

https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1372

Keywords:

Artificial intelligence, Chikungunya fever, Clinical diagnosis

Abstract

Objective: The purpose of this research is to develop and evaluate a machine learning model to assist in the clinical diagnosis of chikungunya fever using patient medical records. Method: Data were obtained from the Open Data Portal of Recife City Hall, encompassing 18,881 patient records. Results: After preprocessing and cross-validation, the Random Forest model with 100 trees showed the best performance, with an accuracy of 93.40% and a receiver-operator characteristic area of 0.990. The model application demonstrated high efficacy in differentiating between chikungunya and other conditions. Conclusion: We conclude that the use of artificial intelligence can significantly improve the clinical diagnosis of arboviruses. Future work includes expanding the database, integrating the model into clinical environments, and exploring advanced machine learning techniques.

Author Biographies

Cecilia Cordeiro da Silva, Universidade Federal de Pernambuco

Doutora, Departamento de Engenharia Biomédica, Universidade Federal de Pernambuco, Recife, Pernambuco, Brasil.

Ana Clara Gomes da Silva, Universidade de Pernambuco

Mestra, Programa de Pós-Graduação em Engenharia da Computação, Escola Politécnica da Universidade de Pernambuco, Recife, Pernambuco, Brasil.

Clarisse Lins de Lima, Universidade Federal de Pernambuco

Doutora, Departamento de Engenharia Biomédica, Universidade Federal de Pernambuco, Recife, Pernambuco, Brasil.

Maíra Araújo de Santana, Universidade Federal de Pernambuco

Doutora, Departamento de Engenharia Biomédica, Universidade Federal de Pernambuco, Recife, Pernambuco, Brasil.

Juliana Carneiro Gomes, Universidade Federal de Pernambuco

Doutora, Departamento de Engenharia Biomédica, Universidade Federal de Pernambuco, Recife, Pernambuco, Brasil.

Giselle Machado Magalhães Moreno, Universidade Federal de Pernambuco

Doutora, Departamento de Engenharia Biomédica, Universidade Federal de Pernambuco, Recife, Pernambuco, Brasil.

Karla Amorim Sancho, Universidade Federal de Pernambuco

Doutora, Departamento de Engenharia Biomédica, Universidade Federal de Pernambuco, Recife, Pernambuco, Brasil.

Heloísa Ramos Lacerda de Melo, Universidade Federal de Pernambuco

Doutora, Centro de Ciências Médicas, Universidade Federal de Pernambuco, Recife, Pernambuco, Brasil.

Marcela Franklin Salvador de Mendonça, Universidade Federal de Pernambuco

 Doutora, Centro de Ciências Médicas, Universidade Federal de Pernambuco, Recife, Pernambuco, Brasil.

Wellington Pinheiro dos Santos, Universidade Federal de Pernambuco

Doutora, Departamento de Engenharia Biomédica, Universidade Federal de Pernambuco, Recife, Pernambuco, Brasil.

References

Lopes N, Nozawa C, Linhares REC. Características gerais e epidemiologia dos arbovírus emergentes no Brasil. Rev Pan-Amaz Saude. 2014;5(3):10-10.

Donalisio MR, Freitas ARR, Zuben APBV. Arboviroses emergentes no Brasil: desafios para a clínica e implicações para a saúde pública. Rev Saude Publica. 2017;51:30.

Viana LRDC, Pimenta CJL, Araújo EMNFD, Teófilo TJL, Costa TFD, Costa KNDFM. Arboviroses reemergentes: perfil clínico-epidemiológico de idosos hospitalizados. Rev Esc Enferm USP. 2018;52:e03403.

Young PR. Arboviruses: a family on the move. Dengue and Zika: control and antiviral treatment strategies. 2018:1-10.

Thisyakorn U, Thisyakorn C. Diseases caused by arboviruses‐dengue haemorrhagic fever and Japanese B encephalitis. Med J Aust. 1994;160(1):22-26.

Bautista-Reyes E, Núñez-Avellaneda D, Alonso-Palomares L A, Salazar MI. Chikungunya: Molecular aspects, clinical outcomes and pathogenesis. Rev Investig Clin. 2018;69(6):299-307.

Ahmed M, Mahboob N, Manun KT, Iqbal H. Dilemma in laboratory diagnosis of Dengue, Chikungunya and Zika viruses. Bangladesh J. 2019;30:83-92.

Cunha RVD, Trinta KS. Chikungunya virus: clinical aspects and treatment-A Review. Mem Inst Oswaldo Cruz. 2017;112(8):523-531.

Santos MK, Webber CG. Comparing Deep e Transfer Learning na Classificação de Imagens da Membrana Timpânica. J Health Inform. 2022;14.

Santus E, Marino N, Cirillo D, Chersoni E, Montagud A, Santuccione Chadha A, et al. Artificial intelligence–aided precision medicine for COVID-19: strategic areas of research and development. J Med Internet Res. 2021;23(3):e22453.

Malik YS, Sircar S, Bhat S, Ansari MI, Pande T, Kumar P, et al. How artificial intelligence may help the Covid‐19 pandemic: Pitfalls and lessons for the future. Rev Med Virol. 2021;31(5):1-11.

da Silva Neto SR, Tabosa Oliveira T, Teixeira IV, Aguiar de Oliveira SB, Souza Sampaio V, Lynn T, et al. Machine learning and deep learning techniques to support clinical diagnosis of arboviral diseases: A systematic review. PLoS Negl Trop Dis. 2022;16(1):e0010061.

Published

2024-11-19

How to Cite

da Silva, C. C., da Silva, A. C. G., de Lima, C. L., de Santana, M. A., Gomes, J. C., Moreno, G. M. M., … dos Santos, W. P. (2024). Chikungunya diagnosis using artificial intelligence and medical record data. Journal of Health Informatics, 16(Especial). https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1372

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)