Doctor Bone: training neural networks to assist in determining bone age

Authors

  • Rodrigo Lages Barbosa Universidade de Fortaleza
  • Heitor de Castro Teixeira e Martins Universidade de Fortaleza
  • Felipe Cassiano Barbosa Universidade de Fortaleza
  • Beatriz Torres da Costa Universidade de Fortaleza
  • Rolf Freitas Matela Universidade de Fortaleza
  • José Fernando Rodrigues Ferreira Neto Universidade de Fortaleza
  • Yuri Nekan Soares Fontes Universidade de Fortaleza
  • João Alexandre Lobo Marques University of Saint Joseph
  • João Batista Furlan Duarte Universidade de Fortaleza
  • Joel Sotero da Cunha Neto Universidade de Fortaleza

DOI:

https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1382

Keywords:

Bone Age, Diagnostic Aid, Artificial intelligence

Abstract

Objective: To explore the application of artificial intelligence (AI) in predicting bone age from X-ray images. Method: The Interdisciplinary Methodology for the Development of Health Technologies (MIDTS) was used to develop a prediction tool. Training was conducted with convolutional neural networks (CNNs) using a dataset of 14,036 X-ray images. Results: The tool achieved a coefficient of determination (R²) of 0.94807 and a Mean Absolute Error (MAE) of 6.97, highlighting its accuracy and clinical potential. Conclusion: The project demonstrated great potential to enhance bone age prediction, with possibilities for evolution as the database grows and AI becomes more sophisticated.

Author Biographies

Rodrigo Lages Barbosa, Universidade de Fortaleza

Estagiário, Vice-Reitoria de Pesquisa, Universidade de Fortaleza, Fortaleza (CE), Brasil.

Heitor de Castro Teixeira e Martins, Universidade de Fortaleza

Graduando em ciência da computação, Centro de Ciências Tecnológicas, Universidade de Fortaleza, Fortaleza (CE), Brasil.

Felipe Cassiano Barbosa, Universidade de Fortaleza

Estagiário, Vice-Reitoria de Pesquisa, Universidade de Fortaleza, Fortaleza (CE), Brasil. 

Beatriz Torres da Costa, Universidade de Fortaleza

Estagiário, Vice-Reitoria de Pesquisa, Universidade de Fortaleza, Fortaleza (CE), Brasil.

Rolf Freitas Matela, Universidade de Fortaleza

Estagiário, Vice-Reitoria de Pesquisa, Universidade de Fortaleza, Fortaleza (CE), Brasil. 

José Fernando Rodrigues Ferreira Neto, Universidade de Fortaleza

Coordenador de projetos, Vice-Reitoria de Pesquisa, Universidade de Fortaleza, Fortaleza (CE), Brasil. 

Yuri Nekan Soares Fontes, Universidade de Fortaleza

Analista de projetos, Vice-Reitoria de Pesquisa, Universidade de Fortaleza, Fortaleza (CE), Brasil. 

João Alexandre Lobo Marques, University of Saint Joseph

Doutor, Laboratory of Applied Neurosciences, University of Saint Joseph, Macao, China. 

João Batista Furlan Duarte, Universidade de Fortaleza

Doutor, Centro de Ciências Tecnológicas, Universidade de Fortaleza, Fortaleza (CE), Brasil. 

Joel Sotero da Cunha Neto, Universidade de Fortaleza

Mestre, Centro de Ciências Tecnológicas, Universidade de Fortaleza, Fortaleza (CE), Brasil.

References

Burns DAR, SIlva LR, Júnior DC, Blank D, Vaz EDS, Borges WG. Tratado de pediatria. 4th ed. São Paulo: Manole Saúde; 2017.

Somkantha K, Theera-Umpon N, Auephanwiriyakul S, Williamson TH. Bone age assessment in young children using automatic carpal bone feature extraction and support vector regression. J Digit Imaging. 2011 Dec;24(6):1044-58. doi: 10.1007/s10278-011-9372-3. DOI: https://doi.org/10.1007/s10278-011-9372-3

Larson DB, Chen MC, Lungren MP, Halabi SS, Stence NV, Langlotz CP. Performance of a deep-learning neural network model in assessing skeletal maturity on pediatric hand radiographs. Radiology. 2018 Apr;287(1):313-22. doi: 10.1148/radiol.2017170236. DOI: https://doi.org/10.1148/radiol.2017170236

Rijn RR, Lequin MH, Thodberg HH. Bone age assessment: automated techniques coming of age? Acta Radiol. 2013 Nov;54(9):1024-9. doi: 10.1258/ar.2012.120443. DOI: https://doi.org/10.1258/ar.2012.120443

Savi FM, de Oliveira PT, Cestari TM, Granjeiro JM, Taga R. Histomorphometric evaluation of critical-sized bone defects using osteomeasure and aperio image analysis systems. Tissue Eng Part C Methods. 2019 Dec;25(12):732-741. doi: 10.1089/ten.tec.2019.0179. DOI: https://doi.org/10.1089/ten.tec.2019.0179

Lee BD, Lee SA, Kim H, Cho J, Kim MS, Ko HK, et al. Automated bone age assessment using artificial intelligence: the future of bone age assessment. Korean J Radiol. 2021 May;22(5):792-800. doi: 10.3348/kjr.2020.0941. DOI: https://doi.org/10.3348/kjr.2020.0941

Albanese A, Stanhope R, Fitzgerald F, Preece M. The use of a computerized method of bone age assessment in clinical practice. Horm Res. 1995;44(3):2-7. doi: 10.1159/000184665. DOI: https://doi.org/10.1159/000184665

Maratová K, Chaloupková P, Šnajderová M, Krejčí H, Černá J, Novotná D, et al. A comprehensive validation study of the latest version of Bonexpert on a large cohort of Caucasian children and adolescents. Front Endocrinol (Lausanne). 2023;14:1130580. doi: 10.3389/fendo.2023.1130580. DOI: https://doi.org/10.3389/fendo.2023.1130580

Ravi D, Wong C, Deligianni F, Berthelot M, Andreu-Perez J, Lo B, Yang GZ. Deep learning for health informatics. IEEE J Biomed Health Inform. 2017 Jan;21(1):4-21. DOI: https://doi.org/10.1109/JBHI.2016.2636665

Filho JEV, Brasil CCP, Carneiro MC, Junior GS. MIDTS: método interdisciplinar para o desenvolvimento de tecnologias em saúde. In: Jorge MSB, Vergara CAC, Sampaio HADC, Moreira TMM, editors. Tecnologias e-Health em Gestão em Saúde. Curitiba: Editora CRV; 2021. p. 49-66.

Nielsen J. Ten usability heuristics [Internet]. [place unknown: publisher unknown]; 1994 Apr 24 [updated 2024 Jan 30; cited 2024 May 29]. Available from: https://www.nngroup.com/articles/ten-usability-heuristics/.

Material Design [Internet]. [place unknown: publisher unknown]; [date unknown] [cited 2024 May 29]. Available from: https://m3.material.io/.

Keras [Internet]. Keras 3 API Documentation. [place unknown: publisher unknown]; 2024 [cited 2024 May 24]. Available from: https://keras.io/api/.

Halabi SS, Prevedello LM, Kalpathy-Cramer J, Mamonov AB, Bilbily A, Cicero M, et al. The RSNA Pediatric Bone Age Machine Learning Challenge. Radiology. 2019 Feb;290(2):498-503. DOI: https://doi.org/10.1148/radiol.2018180736

ImageNet [Internet]. [place unknown: publisher unknown]; [date unknown] [cited 2024 May 28]. Available from: https://www.image-net.org/.

Published

2024-11-19

How to Cite

Barbosa, R. L., Teixeira e Martins, H. de C., Barbosa, F. C., da Costa, B. T., Matela, R. F., Ferreira Neto, J. F. R., … da Cunha Neto, J. S. (2024). Doctor Bone: training neural networks to assist in determining bone age. Journal of Health Informatics, 16(Especial). https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1382

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.