Evaluation of Stacking on Biomedical Data
Keywords:
Artificial Intelligence, Classification, EnsemblesAbstract
Objectives: Stacking is a well-known ensemble technique, but some of its aspects still need to be explored, e.g., there are few recommendations on which and how many algorithms should be used at level-0 or even which algorithm should be used to compose the level-1 meta-classifier. The literature indicates the meta-algorithm at level-1 should be simple, and Naive Bayes has been typically used in these studies. Methods: In this work, we have analyzed stacking on biomedical datasets, using three different paradigms of machine learning algorithms to compose the meta-classifier. Results: The experiments indicate simple meta-algorithms do not provide good results. Conclusion: the meta-classifier must have a degree of complexity to provide a nice performance.Downloads
Published
2012-09-25
How to Cite
Ruz Caffé, M. I., Santoro Perez, P., & Baranauskas, J. A. (2012). Evaluation of Stacking on Biomedical Data. Journal of Health Informatics, 4(3). Retrieved from https://jhi.sbis.org.br/index.php/jhi-sbis/article/view/181
Issue
Section
Original Articles