Evaluación de la Calidad de Señal de Señales de Fotopletismografía Utilizando Modelos Híbridos Basados en Reglas y Aprendizaje
DOI:
https://doi.org/10.59681/2175-4411.v15.iEspecial.2023.1080Palabras clave:
Evaluación de la calidad, Fotopletismografía, Aprendizaje profundoResumen
Las señales de fotopletismografía son cruciales para una amplia gama de aplicaciones y, por lo tanto, las señales PPG de alta calidad son cruciales para describir con precisión el estado cardiorrespiratorio. Los artefactos de movimiento pueden interrumpir las aplicaciones basadas en PPG, especialmente cuando estas señales se registran a través de dispositivos portátiles. Teniendo esto en cuenta, algunos investigadores han propuesto algunos métodos para evaluar la calidad de estas señales. Algunos enfoques de aprendizaje y basados en reglas para la señal PPG están disponibles para determinar la calidad de la señal. En este documento, proponemos una compensación entre estos dos enfoques, introduciendo un modelo híbrido que emplea reglas de aprendizaje y decisión para determinar la calidad de la señal.
Citas
A Quality Assessment System for PPG Waveform. Hao, Jiang, and Gao Bo. 2021, 2021 IEEE 3rd International Conference on Circuits and Systems (ICCS).
Optimal signal quality index for photoplethysmogram signals. Elgendi, Mohamed. 2016, Bioengineering 3.4, p. 21.
Extending the battery lifetime of wearable sensors with embedded machine learning. Fafoutis, X., Marchegiani, L., Elsts, A., Pope, J., Piechocki, R., & Craddock. 2018, IEEE 4th World Forum on Internet of Things (WF-IoT).
A survey of convolutional neural networks: analysis, applications, and prospects. Li, Z., Liu, F., Yang, W., Peng, S., & Zhou, J. 2021, IEEE transactions on neural networks and learning systems.
1-D convolutional neural networks for signal processing applications. Kiranyaz, S., Ince, T., Abdeljaber, O., Avci, O., & Gabbouj, M. 2019, ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
Keras-Spiking. www.nengo.ai/keras-spiking. [Online]
Cross-validation. Refaeilzadeh, Payam, Lei Tang, and Huan Liu. 2009, Encyclopedia of database systems 5, pp. 532-538.
Accelerated visual context classification on a low-power smartwatch. Conti, F., Palossi, D., Andri, R., Magno, M., & Benini, L. 2016, IEEE Transactions on Human-Machine Systems 47.1, pp. 19-30.
A novel method for accurate estimation of HRV from smartwatch PPG signals. Bhowmik, Tanmoy, Jishnu Dey, and Vijay Narayan Tiwari. 2017, 2017 39th annual international conference of the IEEE engineering in medicine and biology society (EMBC), pp. 109-112.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2023 Giovani Decico Lucafó, Pedro Freitas, Rafael Lima, Gustavo da Luz, Ruan Bispo, Paula Rodrigues, Frank Cabello, Otavio Penatti
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
La sumisión de un artículo a el Journal of Health Informatics es entendida como exclusiva y que no esta siendo considerado para publicación en otro periódico. La permisión de los autores para la publicación de su artículo en lo JHI implica en la exclusiva autorización concedida a los editores para su inclusión en la revista. Al someter un artículo, a lo autor será solicitada la permisión electrónica de una Nota de Copyright. Una mensaje electrónica será enviada a lo autor correspondiente confirmando el recibo del manuscrito y lo aceite de la Nota de Copyright.