Mejora de la clasificación automática de tumores cerebrales con técnicas de aprendizaje profundo

Autores/as

  • Willian de Vargas UFCSPA
  • Dieine Estela Bernieri Schiavon UFCSPA
  • Viviane Rodrigues Botelho UFCSPA
  • Thatiane Alves Pianoski UFCSPA
  • Carla Diniz Lopes Becker UFCSPA

DOI:

https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1253

Palabras clave:

Aprendizaje profundo, Clasificación Automática, Tumores cerebrales

Resumen

La precisión en la clasificación automática de tumores cerebrales desempeña un papel crucial en la confiabilidad del método para aplicaciones en la salud. Los errores de clasificación pueden dar lugar a diagnósticos imprecisos, resultando en enfoques inadecuados y potencialmente perjudiciales. Objetivo: Proponer un enfoque para minimizar errores de clasificación. Método: Desarrollamos un modelo de red neuronal convolucional en dos etapas: primero, cuatro modelos binarios para tumores con desafíos significativos de diferenciación; luego, un modelo Ensemble para clasificación multiclase. Además, empleamos una técnica para interpretar las predicciones del modelo e identificar las regiones de interés en imágenes médicas. Resultados: Los resultados demuestran que el enfoque propuesto logra una precisión del 98%. Conclusión: Este trabajo aporta a la aplicación del aprendizaje profundo en la clasificación de tumores cerebrales, resaltando la importancia de enfoques transparentes y robustos para garantizar precisión y seguridad en las predicciones.

Biografía del autor/a

Willian de Vargas, UFCSPA

Master’s Student, Federal University of Health Sciences of Porto Alegre – UFCSPA, Porto Alegre (RS), Brazil.

Dieine Estela Bernieri Schiavon, UFCSPA

Master’s Student, Federal University of Health Sciences of Porto Alegre – UFCSPA, Porto Alegre (RS), Brazil.

Viviane Rodrigues Botelho, UFCSPA

Ph.D., Federal University of Health Sciences of Porto Alegre – UFCSPA, DECESA, Porto Alegre (RS), Brazil.

Thatiane Alves Pianoski, UFCSPA

Ph.D., Federal University of Health Sciences of Porto Alegre – UFCSPA, DECESA, Porto Alegre (RS), Brazil.

Carla Diniz Lopes Becker, UFCSPA

Ph.D., Federal University of Health Sciences of Porto Alegre – UFCSPA, DECESA, Porto Alegre (RS), Brazil.

Citas

Câncer do sistema nervoso central [Internet]. Instituto Nacional de Câncer - INCA. [cited 2024 Jan 26]. Available from: https://www.gov.br/inca/pt-br/assuntos/cancer/tipos/sistema- nervoso-central

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: a Cancer Journal for Clinicians. 2021 Feb 4;71(3):209–49.

Nowosielski M, Galldiks N, Iglseder S, Kickingereder P, von Deimling A, Bendszus M, et al. Diagnostic challenges in meningioma. Neuro-Oncology [Internet]. 2017 Nov 1 [cited 2024 Jan 26];19(12):1588–98. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5716093/

Wilms G, Lammens M, Marchal G, Demaerel P, Verplancke J, Van Calenbergh F, et al. Prominent dural enhancement adjacent to nonmeningiomatous malignant lesions on contrast-enhanced MR images. AJNR American journal of neuroradiology [Internet]. 1991 [cited 2024 Jan 26];12(4):761–4. Available from: https://pubmed.ncbi.nlm.nih.gov/1882761/

Bhuvaji S. SartajBhuvaji/Brain-Tumor-Classification-DataSet [Internet]. GitHub. 2023 [cited 2024 Jan 26]. Available from: https://github.com/SartajBhuvaji/Brain-Tumor-Classification- DataSet

Cheng, J. (2017). Brain tumor dataset [Internet]. [cited 2024 Jan 26]. Available from: https://figshare.com/articles/dataset/brain_tumor_dataset/1512427. DOI: 10.6084/m9.figshare.1512427.v5

Ahmedhamada0. Br35H: Brain Tumor Detection 2020 [Internet]. [cited 2024 Jan 26]. www.kaggle.com. Available from: https://www.kaggle.com/datasets/ahmedhamada0/brain- tumor-detection

Ribeiro MT, Singh S, Guestrin C. “Why Should I Trust You?” Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD ’16 [Internet]. 2016; [cited 2024 Jan 26]. Available from: https://arxiv.org/pdf/1602.04938.pdf.

Rasool M, Ismail NA, Boulila W, Ammar A, Samma H, Yafooz WMS, et al. A Hybrid Deep Learning Model for Brain Tumour Classification. Entropy [Internet]. 2022 Jun 8;24(6):799. [cited 2024 Jan 26]. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9222774/

Rasool M, Ismail NA, Al-Dhaqm A, Yafooz WMS, Alsaeedi A. A Novel Approach for Classifying Brain Tumours Combining a SqueezeNet Model with SVM and Fine-Tuning. Electronics. 2022 Dec 29;12(1):149.

Mahajan, N., & Chavan, H. (2023). A Robust Approach for Brain Tumor Detection using Transfer Learning. Available from: https://ieeexplore.ieee.org/abstract/document/10220906?casa_token=ZmdSd_mFuJ0AAAA A:l5j9izaUrS-LA26hcIujQgSDBscVkYwPc9MsmLEmXBrS3XRWZ2- dOfnBend_8uD_RDg4scQ7gg

Gómez-Guzmán MA, Jiménez-Beristaín L, García-Guerrero EE, López-Bonilla OR, Tamayo-Perez UJ, Esqueda-Elizondo JJ, et al. Classifying Brain Tumors on Magnetic Resonance Imaging by Using Convolutional Neural Networks. Electronics [Internet]. 2023 Jan 1;12(4):955. [cited 2024 Jan 26]. Available from: https://www.mdpi.com/2079- 9292/12/4/955

Özkaraca O, Bağrıaçık Oİ, Gürüler H, Khan F, Hussain J, Khan J, et al. Multiple Brain Tumor Classification with Dense CNN Architecture Using Brain MRI Images. Life. 2023 Jan 28;13(2):349.

Nickparvar, M. (2023). Brain Tumor MRI Dataset [Internet]. [cited 2024 Jan 26]. www.kaggle.com. Available from: https://www.kaggle.com/datasets/masoudnickparvar/brain- tumor-mri-dataset/

Filatov D, Yar GNAH. Brain Tumor Diagnosis and Classification via Pre-Trained Convolutional Neural Networks [Internet]. arXiv.org. 2022. [cited 2024 Jan 26]. Available from: https://arxiv.org/abs/2208.00768

Glioma Object Detection Dataset and Pre-Trained Model by test [Internet]. Roboflow. [cited 2024 Jan 26]. Available from: https://universe.roboflow.com/test-786lz/glioma-4mibx

Meningioma Detector Object Detection Dataset and Pre-Trained Model by Kelompok BRIN [Internet]. Roboflow. [cited 2024 Jan 26]. Available from: https://universe.roboflow.com/kelompok-brin-dxxif/meningioma-detector

brain-tumor-classification Classification Dataset by opendataacademia [Internet]. Roboflow. [cited 2024 Jan 26]. Available from: https://universe.roboflow.com/opendataacademia/brain- tumor-classification-qkeoa

Desai PK. Multiple meningiomas | Radiology Case | Radiopaedia.org [Internet].

Radiopaedia. [cited 2024 Jan 26]. Available from: https://radiopaedia.org/cases/multiple- meningiomas-1

Gomes L. Glioma de Baixo Grau - Tumores Cerebrais [Internet]. Dr. Gustavo Noleto. 2022 [cited 2024 Jan 26]. Available from: https://www.neurodrgustavonoleto.com/glioma-de-baixo- grau/

Publicado

2024-11-19

Cómo citar

de Vargas, W., Schiavon, D. E. B., Botelho, V. R., Pianoski, T. A., & Becker, C. D. L. (2024). Mejora de la clasificación automática de tumores cerebrales con técnicas de aprendizaje profundo. Journal of Health Informatics, 16(Especial). https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1253

Artículos similares

<< < 1 2 3 4 5 6 7 8 9 10 > >> 

También puede {advancedSearchLink} para este artículo.

Artículos más leídos del mismo autor/a