Identificación de la enfermedad de Alzheimer a través del habla: un enfoque multilingüe
DOI:
https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1273Palabras clave:
Aprendizaje Automático, Análisis Automático del Habla, Enfermedad de AlzheimerResumen
Alzheimer's disease, the leading form of dementia among elderly individuals worldwide, has significant social and economic repercussions. It is characterized by memory loss and changes in language, cognition, and emotions, irreversibly affecting neurons. Early diagnosis is crucial but challenging, as it relies on detailed medical evaluations, cognitive tests, and complex exams that are often expensive and inaccessible, particularly for low-income individuals. In this context, advanced computational techniques, such as machine learning (ML), emerge as promising non-invasive alternatives for the early detection of the disease. This study introduces a multilingual ML-based approach focusing on paralinguistic and emotional speech characteristics as biomarkers for Alzheimer's identification. The experiments yielded results with accuracies reaching 81% for English and 87.50% for Portuguese. Additionally, integrating this methodology with the state-of-the-art model by Haider, Fuente, and Luz(1) resulted in an average accuracy of 81.70%, surpassing their original results.
Citas
Haider F, de la Fuente S, Luz S. An Assessment of Paralinguistic Acoustic Features for Detection of Alzheimer’s Dementia in Spontaneous Speech. IEEE Journal of Selected Topics in Signal Processing. 2020 Feb;14:272-281.
World Health Organization. Ageing. World Health Organization (WHO) [Internet]. 2024 [cited 2024 Jan 15]; [about 1 p.]. Available from: https://www.who.int/health-topics/ageing.
Long S, Benoist C, Weidner W. World Alzheimer Report 2023: Reducing dementia risk: never too early, never too late. London, England: Alzheimer’s Disease International (ADI); 2023.
Campbell EL, Mesía RY, Docío-Fernández L, García-Mateo C. Paralinguistic and linguistic fluency features for Alzheimer’s disease detection. Computer Speech & Language. 2021. Jul;68:101198.
de la Fuente Garcia S, Haider F, Luz S. Cross-corpus Feature Learning between Spontaneous Monologue and Dialogue for Automatic Classification of Alzheimer’s Dementia Speech. 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). 2020 Jul 20-24; Montreal, Canada. p. 5851-5855.
Bernieri G, Duarte JC. Identifying Alzheimer’s Disease Through Speech Using Emotion Recognition. Journal of Health Informatics. 2023 Jul 20;15:1-14.
Russell JA, Mehrabian A. Evidence for a three-factor theory of emotions. Journal of Research in Personality. 1977 Sep;11:273–294.
Cai H, Huang X, Liu Z, Liao W, Dai H, Wu Z, et al. Multimodal Approaches for Alzheimer’s Detection Using Patients’ Speech and Transcript. Lecture Notes in Computer Science. 2023 Sep 13;395–406.
Becker JT, Boiler F, Lopez OL, Saxton J, McGonigle KL. The natural history of Alzheimer's disease: Description of study cohort and accuracy of diagnosis. Archives of Neurology. 1994 Jun; 51 (6): 585-594.
Burkhardt F, Paeschke A, Rolfes M, Sendlmeier WF, Weiss B. A database of German emotional speech. In: Proceedings of Interspeech 2005; 2005 Sep 04-08; Lisbon, Portugal. p. 1517-1520.
Aluísio S, Cunha A, Scarton C. Evaluating Progression of Alzheimer’s Disease by Regression and Classification Methods in a Narrative Language Test in Portuguese. Computational Processing of the Portuguese Language. 2016;109–114.
Husein Z. Malaya, Speech-Toolkit library. Version 1.2.7 [software]. 2020 [cited 2024 Jan 15]. Available from: https://github.com/huseinzol05/malaya-speech.
Buechel S, Hahn U. Emotion Analysis as a Regression Problem – Dimensional Models and Their Implications on Emotion Representation and Metrical Evaluation. European Conference on Artificial Intelligence 2016; 2016. p. 1114-1122.
Wagner J, Triantafyllopoulos A, Wierstorf H, Schmitt M, Burkhardt F, Eyben F, et al. Dawn of the transformer era in speech emotion recognition: Closing the valence gap. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2022; 1–13.
Shreffler J, Huecker MR. Diagnostic Testing Accuracy: Sensitivity, Specificity, Predictive Values and Likelihood Ratios. StatPearls. 2023.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
La sumisión de un artículo a el Journal of Health Informatics es entendida como exclusiva y que no esta siendo considerado para publicación en otro periódico. La permisión de los autores para la publicación de su artículo en lo JHI implica en la exclusiva autorización concedida a los editores para su inclusión en la revista. Al someter un artículo, a lo autor será solicitada la permisión electrónica de una Nota de Copyright. Una mensaje electrónica será enviada a lo autor correspondiente confirmando el recibo del manuscrito y lo aceite de la Nota de Copyright.