Inteligencia artificial en la enseñanza de la Odontología: análisis bibliométrico

Autores/as

  • Eduarda Gomes Onofre de Araújo Universidade Federal da Paraíba
  • Samara Lavínnya Serrano de Souza Araújo Universidade Federal da Paraíba
  • Lucas do Nascimento Barbosa Universidade Federal da Paraíba
  • Júlio César Guimarães Freire Universidade Federal da Paraíba
  • Matheus Victor de Carvalho Rufino Universidade Federal da Paraíba
  • Clauirton de Albuquerque Siebra Universidade Federal da Paraíba
  • Lafayette Batista Melo Instituto Federal da Paraíba
  • Januária de Medeiros Silva Faculdade de Ciências Médicas da Paraíba
  • Carmem Silva L. Dalle Piagge Universidade Federal da Paraíba
  • Cláudia Batista Mélo Universidade Federal da Paraíba

DOI:

https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1301

Palabras clave:

Odontología, Enseñanza, Inteligencia Artificial

Resumen

Objetivo: Realizar un análisis bibliométrico de la inteligencia artificial en la enseñanza de la Odontología para identificar brechas en la literatura y sintetizar descubrimientos actuales en el área. Método: Investigación bibliométrica de carácter exploratorio y descriptivo. Se seleccionaron las bases de datos de WoS y Scopus para llevar a cabo el estudio y posterior análisis de los datos. Se excluyeron artículos en edición editorial, cartas y capítulos de libros. Resultados: 93 registros, publicados en 49 revistas indexadas en las bases de datos, con 314 autores afiliados a 199 instituciones responsables de las publicaciones en 34 países diferentes. Tras la eliminación de duplicados, se incluyeron 74 referencias para el análisis completo. Todos los artículos seleccionados fueron analizados según datos bibliométricos preestablecidos. Conclusión: Es fundamental considerar la escasez de trabajos científicos que abordan este tema y la necesidad continua de investigaciones para maximizar los beneficios de su incorporación en el ámbito académico.

Biografía del autor/a

Eduarda Gomes Onofre de Araújo, Universidade Federal da Paraíba

Mestranda, Programa de Pós-Graduação em Odontologia, Universidade Federal da Paraíba, João Pessoa (PB), Brasil.

Samara Lavínnya Serrano de Souza Araújo, Universidade Federal da Paraíba

Graduando Odontologia, Universidade Federal da Paraíba, João Pessoa (PB), Brasil.

Lucas do Nascimento Barbosa, Universidade Federal da Paraíba

Graduando Odontologia, Universidade Federal da Paraíba, João Pessoa (PB), Brasil.

Júlio César Guimarães Freire, Universidade Federal da Paraíba

Graduando Odontologia, Universidade Federal da Paraíba, João Pessoa (PB), Brasil.

Matheus Victor de Carvalho Rufino, Universidade Federal da Paraíba

Graduando Odontologia, Universidade Federal da Paraíba, João Pessoa (PB), Brasil.

Clauirton de Albuquerque Siebra, Universidade Federal da Paraíba

Doutor/Professor, Departamento de Informática, Universidade Federal da Paraíba, João Pessoa (PB), Brasil.

Lafayette Batista Melo, Instituto Federal da Paraíba

Doutor/Professor, Unidade Acadêmica de Informática, Instituto Federal da Paraíba, João Pessoa (PB), Brasil.

Januária de Medeiros Silva, Faculdade de Ciências Médicas da Paraíba

Mestre/Professora, Curso de Medicina, Faculdade de Ciências Médicas da Paraíba, João Pessoa (PB), Brasil.

Carmem Silva L. Dalle Piagge, Universidade Federal da Paraíba

Doutora/Professora, Departamento de Odontologia Restauradora, Universidade Federal da Paraíba, João Pessoa (PB), Brasil.

Cláudia Batista Mélo, Universidade Federal da Paraíba

Doutora/Professora, Departamento de Clínica e Odontologia Social, Universidade Federal da Paraíba, João Pessoa (PB), Brasil.

Citas

Klaassen H, Ashida S, Comnick CL, Xie XJ, Smith BM, Tabrizi M, et al. Covid-19 pandemic and its impact on dental students: A multi-institutional survey. J Dent Educ. 2021 jul; 85(7):1280-1286. DOI: https://doi.org/10.1002/jdd.12597

Turing AM. Computing machinery and intelligence. Mind. 1950; 49:433-446. DOI: https://doi.org/10.1093/mind/LIX.236.433

Horie Y, Yoshio T, Aoyama K, Yoshimizu S, Horiuchi Y, Ishiyama A, et al. Diagnostic outcomes of esophageal cancer by artificial intelligence using convolutionalneural networks. Gastrointest Endosc. 2019 jan; 89(1):25-32. DOI: https://doi.org/10.1016/j.gie.2018.07.037

Iroda A, Diyora A. Artificial intelligence in medicine: benefits and drawbacks. Br View. 2021; 6(1):55-59.

Lee JH, Ha EJ, Kim JH. Application of deep learning to thediagnosis of cervical lymph node metastasis from thyroid cancerwith CT. Eur Radiol. 2019 oct; 29(10)5452-5457. DOI: https://doi.org/10.1007/s00330-019-06098-8

Carrillo-Perez F, Pecho OE, Morales JC, Paravina RD, Bona AD, Ghinea R, et al. Applications of artificial intelligence in dentistry: A comprehensive review. J Esthet and Restor Dent. 2022 jan; 34(1):259-280. DOI: https://doi.org/10.1111/jerd.12844

Khanagar SB, Al-Ehaideb A, Maganur PC, Vishwanathaiah S, Patil S, Baeshen H, et al. Developments, application, and performance of artificial intelligence indentistry - A systematic review. J Dent Sci. 2021 jan; 16(1):508-522. DOI: https://doi.org/10.1016/j.jds.2020.06.019

Shan T, Tay FR, Gu L. Application of artificial intelligence indentistry. J Dent Res. 2021 mar; 100(3): 232-244. DOI: https://doi.org/10.1177/0022034520969115

Alauddin MS, Baharuddin AS, Ghazali MIM. The modern and digital transformation of oral health care: A mini review. Healthcare. 2021 jan; 9(2):118. DOI: https://doi.org/10.3390/healthcare9020118

Imran E, Adanir N, Khurshid Z. Significance of haptic and virtual reality simulation (VRS) in the dental education: A review of literature. Appl Sci. 2021; 11(21):10196. DOI: https://doi.org/10.3390/app112110196

Lillehaug SI, Lajoie SP. AI in medical education-another grand challenge for medical informatics. Artif Intell Med. 1998 mar; 12(3):197-225. DOI: https://doi.org/10.1016/S0933-3657(97)00054-7

Zitzmann NU, Matthisson L, Ohla H, Joda T. Digital undergraduate education in dentistry: A systematic review. Int J Environ Res Public Health. 2020 may; 17(9)3269. DOI: https://doi.org/10.3390/ijerph17093269

Hicks D, Wouters P, Waltman L, Rijcke S, Rafols I. Bibliometrics: the Leiden Manifesto for research metrics. Nature. 2015 apr; 520:429-431. DOI: https://doi.org/10.1038/520429a

Mukherjee D, Lim WM, Kumar S, Donthu N. Guidelines for advancing theory and practice through bibliometric research. J Bus Res. 2022 sep; 148:101-115. DOI: https://doi.org/10.1016/j.jbusres.2022.04.042

Liu X, Zhao S, Tan L, Tan Y, Wang Y, Ye Z, et al. Frontier and hot topics in electrochemiluminescence sensing technology based on CiteSpace bibliometric analysis. Biosens Bioelectron. 2022 apr; 201:113932. DOI: https://doi.org/10.1016/j.bios.2021.113932

Yeung AWK. Comparison between Scopus, Web of Science, PubMed and publishers for mislabelled review papers. Curr Sci. 2019 jun; 116(11):1909-1914. DOI: https://doi.org/10.18520/cs/v116/i11/1909-1914

Kishimoto T, Goto T, Matsuda T, Iwawaki Y, Ichikawa T. Application of artificial intelli-gence in the dental field: A literature review. J Prosthodont Res. 2022 jan; 66(1):19-28. DOI: https://doi.org/10.2186/jpr.JPR_D_20_00139

Schwendicke F, Samek W, Krois J. Artificial intelligence in dentistry: Chances and challenges. J Dent Res. 2020 jul; 99(7):769-774. DOI: https://doi.org/10.1177/0022034520915714

Rhienmora P, Haddawy P, Suebnukarn S, Dailey MN. Intelligent dental training simulator with objective skill assessment and feedback. Artif Intell Med. 2011 jun; 52(2):115-21. DOI: https://doi.org/10.1016/j.artmed.2011.04.003

Lee J-H, Yu H-J, Kim M-j, Kim J-W, Choi J. Automated cephalometric landmark detection with confidence regions using Bayesian convolutional neural networks. BMC Oral Health. 2020 out; 20(1): 270. DOI: https://doi.org/10.1186/s12903-020-01256-7

Thurzo A, Strunga M, Urban R, Surovková J, Afrashtehfar KI. Impact of artificial intelligence on dental education: A review and guide for curriculum update. Educ Sci. 2023 jan; 13(150):1-14. DOI: https://doi.org/10.3390/educsci13020150

Speight PM, Elliott AE, Jullien JÁ; Downer MC, Zakzrewska JM. The use of artificial intelligence to identify people at risk of oral cancer and precancer. Br Dent J. 1995 nov; 179:382-387. DOI: https://doi.org/10.1038/sj.bdj.4808932

Rhienmora P, Haddawy P, Khanal P, Suebnukarn S, Dailey MN. A virtual reality simulator for teaching and evaluating dental procedures. Methods Inf Med. 2010 jun; 49(4):396-405. DOI: https://doi.org/10.3414/ME9310

Thurzo A, Urbanová W, Novák B, Czako L, Siebert T, Stano P, et al. Where is the artificial intelligence applied in dentistry? Systematic review and literature analysis. Healthcare (Basel). 2022 jul; 10(7):1269. DOI: https://doi.org/10.3390/healthcare10071269

Monterubbianesi R, Tosco V, Vitiello F, Orilisi G, Fraccastoro F, Putignano A, et al. Augmented, virtual and mixed reality in dentistry: A narrative review on the existing platforms and future challenges. Appl Sci. 2022 jan; 12(2):877. DOI: https://doi.org/10.3390/app12020877

Sallam M, Salim NA, Barakat M, Al-Tammemi AB. ChatGPT applications in medical, dental, pharmacy, and public health education: A descriptive study highlighting the advantages and limitations. Narra J. 2023 abr; 3(1):e103. DOI: https://doi.org/10.52225/narra.v3i1.103

Yüzbaşıoğlu E. Attitudes and perceptions of dental students towards artificial intelligence. J Dent Educ. 2021 jan; 85(1):60-68. DOI: https://doi.org/10.1002/jdd.12385

Publicado

2024-11-19

Cómo citar

de Araújo, E. G. O., Araújo, S. L. S. de S., Barbosa, L. do N., Freire, J. C. G., Rufino, M. V. de C., Siebra, C. de A., … Mélo, C. B. (2024). Inteligencia artificial en la enseñanza de la Odontología: análisis bibliométrico. Journal of Health Informatics, 16(Especial). https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1301

Artículos similares

1 2 3 4 5 6 7 8 9 10 > >> 

También puede {advancedSearchLink} para este artículo.

Artículos más leídos del mismo autor/a