Personalización de terapias mediante el reconocimiento de emociones en bioseñales
DOI:
https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1315Palabras clave:
Terapia Centrada en la Emoción, Musicoterapia, Inteligencia ArtificialResumen
Objetivo: Este estudio tuvo como objetivo desarrollar una arquitectura híbrida de redes neuronales artificiales para reconocer estados de ánimo en biosensores de personas mayores, incluyendo aquellas con demencia leve a moderada, para apoyar la personalización de terapias. Método: El estudio utilizó la Transformada de Wavelet para convertir señales en imágenes, que fueron empleadas como entrada para una arquitectura híbrida compuesta por una red neuronal convolucional pre-entrenada del tipo LeNet para la extracción de características y un algoritmo de Bosque Aleatorio con 450 árboles para la clasificación. El rendimiento del algoritmo propuesto se evaluó en bases de datos públicas de señales de electroencefalografía y voz, y posteriormente se validó en una base de datos propia de personas mayores con y sin demencia. Resultados: Se alcanzó una precisión del 71% al 73%. Conclusión: Esta tecnología puede integrarse en interfaces humano-máquina para personalizar diversas terapias, como la musicoterapia.
Citas
Vivas EN, Rocha SF. The Brazilian population aging and its contemporary challenges. MOJ Gerontol Ger. 2020;5(5):165-8. DOI: https://doi.org/10.15406/mojgg.2020.05.00251
Bloom DE, Canning D, Lubet A. Global population aging: Facts, challenges, solutions & perspectives. Daedalus. 2015;144(2):80-92. DOI: https://doi.org/10.1162/DAED_a_00332
Silva-Júnior JD. Memórias Autobiográficas e Música em Idosos. Campinas: Editora Alínea. 2018.
Peixoto CT da S. Saúde mental: um enfoque voltado à prevenção da demência de alzheimer. JHMReview [Internet]. 2021;7(3). Disponível em: https://ijhmreview.org/ijhmreview/article/view/276
Santana MA, Lima CL, Torcate AS, Fonseca FS, Santos WP. Affective computing in the context of music therapy: a systematic review. RSD [Internet]. 2021;10(15): e392101522844. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/22844 DOI: https://doi.org/10.33448/rsd-v10i15.22844
Veltmeijer EA, Gerritsen C, Hindriks KV. Automatic emotion recognition for groups: a review. IEEE Transactions on Affective Computing. 2021;14(1):89-107. DOI: https://doi.org/10.1109/TAFFC.2021.3065726
Dupré D, Krumhuber EG, Küster D, McKeown GJ. A performance comparison of eight commercially available automatic classifiers for facial affect recognition. Plos one. 2020;15(4):e0231968. DOI: https://doi.org/10.1371/journal.pone.0231968
Mallat SG. Multifrequency channel decompositions of images and wavelet models. IEEE Transactions on Acoustics, speech, and signal processing. 1989;37(12):2091-110. DOI: https://doi.org/10.1109/29.45554
Eaton JW, Bateman D, Hauberg S. GNU Octave version 3.0. 1 manual: a high-level interactive language for numerical computations. Whales: Network Theory Ltd. 2007.
Witten IH, Frank E, Hall MA. Data Mining: Practical machine learning tools and techniques. Burlington: Morgan Kaufmann Publishers. 2011.
Soleymani M, Lichtenauer J, Pun T, Pantic M. A multimodal database for affect recognition and implicit tagging. IEEE transactions on affective computing. 2011;3(1):42-55. DOI: https://doi.org/10.1109/T-AFFC.2011.25
Livingstone SR, Russo FA. The Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS): A dynamic, multimodal set of facial and vocal expressions in North American English. PloS one. 2018;13(5):e0196391. DOI: https://doi.org/10.1371/journal.pone.0196391
McHugh ML. Interrater reliability: the kappa statistic. Biochemia medica. 2012;22(3):276-82. DOI: https://doi.org/10.11613/BM.2012.031
Almeida OP. Mini exame dos estado mental e o diagnóstico de demência no Brasil. Arquivos de Neuro-psiquiatria. 1998;56:605-12. DOI: https://doi.org/10.1590/S0004-282X1998000400014
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
La sumisión de un artículo a el Journal of Health Informatics es entendida como exclusiva y que no esta siendo considerado para publicación en otro periódico. La permisión de los autores para la publicación de su artículo en lo JHI implica en la exclusiva autorización concedida a los editores para su inclusión en la revista. Al someter un artículo, a lo autor será solicitada la permisión electrónica de una Nota de Copyright. Una mensaje electrónica será enviada a lo autor correspondiente confirmando el recibo del manuscrito y lo aceite de la Nota de Copyright.