Un nuevo enfoque de patrones binarios en las radiografías de tórax para avanzar en el diagnóstico de la tuberculosis
DOI:
https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1349Palabras clave:
Diagnóstico, Inteligencia artificial, TuberculosisResumen
Objetivo: La tuberculosis (TB) afecta a millones de personas, especialmente a las más miserables, revelando desigualdades sociales. A pesar de los avances en inteligencia artificial (IA) en el control de la tuberculosis, pocos beneficios llegan a quienes más los necesitan. Este estudio propone una IA optimizada para discriminar los casos de tuberculosis de los individuos sanos. Método: el enfoque incorpora descriptores de congruencia de fase y patrones binarios locales en un modelo de optimización mínima secuencial (SMO) para analizar radiografías de tórax (CXR). Resultados: La IA optimizada funciona mejor que los enfoques existentes en la literatura, entregando un valor de especificidad superior al 97% en diferentes bases y escenarios de segmentación. Conclusión: La aplicación de la IA propuesta en el análisis RXT podría representar un avance significativo en el control de la tuberculosis, especialmente en las poblaciones más necesitadas, ya que constituye una solución accesible y eficaz que abre posibilidades para el desarrollo de nuevos sistemas de apoyo al diagnóstico.
Citas
WHO (2023). Global tuberculosis report 2023. World Health Organization, Geneva. License: CC BY-NC-SA 3.0 IGO.
Kulkarni, S. and Jha, S. (2020). Artificial intelligence, radiology, and tuberculosis: a review. Academic radiology, 27(1):71–75.
Lakhani, P. and Sundaram, B. (2017). Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks. Radiology, 284(2):574–582.
Jaeger, S., Karargyris, A., Candemir, S. et al. (2013). Automatic screening for tuberculosis in chest radiographs: a survey. Quantitative imaging in medicine and surgery, 3(2):89.
Çallı, E., Sogancioglu, E., van Ginneken, B., van Leeuwen, K. G., and Murphy, K. (2021). Deep learning for chest x-ray analysis: A survey. Medical Image Analysis, 72:102125.
Jaeger, S., Candemir, S., Antani, S. et al. (2014). Two public chest x-ray datasets for computer-aided screening of pulmonary diseases. Quantitative imaging in medicine and surgery, 4(6):475.
Sousa, R. T., Marques, O., Curado, G. T. et al. (2014). Evaluation of classifiers to a childhood pneumonia computer-aided diagnosis system. In 2014 IEEE 27th International Symposium on Computer-Based Medical Systems, p. 477–478. IEEE.
Chauhan, A., Chauhan, D., and Rout, C. (2014). Role of Gist and PHOG features in computer-aided diagnosis of tuberculosis without segmentation. PloS one, 9(11):e112980.
Singh, N. and Hamde, S. (2019). Tuberculosis detection using shape and texture features of chest X-rays. In Innovations in Electronics and Communication Engineering, p. 43–50. Springer.
Vajda, S., Karargyris, A., Jaeger, S., et al. (2018) Feature selection for automatic tuberculosis screening in frontal chest radiographs. Journal of medical systems, 42(8):1–11.
Fonseca, A. U., Rocha, B. M., Nogueira et al. (2022). Tuberculosis detection in chest radiography: A combined approach of local binary pattern features and monarch butterfly optimization algorithm. In 2022 IEEE 46th Annual Computers, Software, and Applications Conference (COMPSAC), p. 1408–1413. IEEE.
Xu, T., Cheng, I., Long, R., and Mandal, M. (2013). Novel coarse-to-fine dual scale technique for tuberculosis cavity detection in chest radiographs. EURASIP Journal on Image and Video Processing, 2013(1):1–18.
Alfadhli, F. H. O., Mand, A. A., Sayeed, M. S. et al. (2017). Classification of tuberculosis with surf spatial pyramid features. In 2017 International Conference on Robotics, Automation and Sciences (ICORAS), p. 1–5. IEEE.
Lopes, U. and Valiati, J. F. (2017). Pre-trained convolutional neural networks as feature extractors for tuberculosis detection. Computers in biology and medicine, 89:135–143.
Rajaraman, S., Zamzmi, G., Folio, L. et al. (2021). Chest X-ray bone suppression for improving classification of tuberculosis-consistent findings. Diagnostics, 11(5):840.
Rajaraman, S., Folio, L. R., Dimperio, J. et al. (2021). Improved semantic segmentation of tuberculosis—Consistent findings in chest x-rays using augmented training of modality-specific U-Net models with weak localizations. Diagnostics, 11(4):616.
Nafisah, S. I. and Muhammad, G. (2022). Tuberculosis detection in chest radiograph using convolutional neural network architecture and explainable artificial intelligence. Neural Computing and Applications, p. 1–21.
Pasa, F., Golkov, V., Pfeiffer, F. et al. (2019). Efficient deep network architectures for fast chest X-ray tuberculosis screening and visualization. Scientific reports, 9(1):1–9.
Alawi, A. E. B., Al-basser, A., Sallam, A. et a. (2021). Convolutional neural networks model for screening tuberculosis disease. In 2021 International Conference of Technology, Science and Administration (ICTSA), p. 1–5. IEEE.
Rajaraman, S., Antani, S., Candemir, S. et al. (2018). Comparing deep learning models for population screening using chest radiography. In Medical Imaging 2018: Computer-Aided Diagnosis, volume 10575, p. 322–332. SPIE.
Srimathi, D. H., Rose, D. P., et al. (2020). A Comparative Study On Performance Of Pre-Trained Convolutional Neural Networks In Tuberculosis Detection. European Journal of Molecular & Clinical Medicine, 7(3):4852–4858.
Oltu, B., Güney, S., Dengiz, B., and Agıldere, M. (2021). Automated Tuberculosis Detection Using Pre-Trained CNN and SVM. In 2021 44th International Conference on Telecommunications and Signal Processing (TSP), p. 92–95.
Khobragade, S., Tiwari, A., Patil, C., and Narke, V. (2016). Automatic detection of major lung diseases using chest radiographs and classification by feed-forward artificial neural network. In 2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), p. 1–5.
Fonseca, A. U., Parreira, P. L., da Silva Vieira, G. S. et al. (2024). A novel tuberculosis diagnosis approach using feedforward neural networks and binary pattern of phase congruency. Intelligent Systems with Applications, 21:200317.
Fonseca, A. U., Felix, J. P., Vieira, G. S. et al. (2023). Diagnosticando Tuberculose com Redes Neurais Artificiais e Recursos BPPC. Journal of Health Informatics, 15(Especial).
Platt, J. (1998). Fast training of support vector machines using sequential minimal optimization. In Advances in Kernel Methods - Support Vector Learning. MIT Press.
Reeves, S. and Zhe, Z. (1999). Sequential algorithms for observation selection. IEEE Transactions on Signal Processing, 47(1):123–132.
Gozes, O. and Greenspan, H. (2019). Deep feature learning from a hospital-scale chest x-ray dataset with application to TB detection on a small-scale dataset. In 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), p. 4076–4079. IEEE.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
La sumisión de un artículo a el Journal of Health Informatics es entendida como exclusiva y que no esta siendo considerado para publicación en otro periódico. La permisión de los autores para la publicación de su artículo en lo JHI implica en la exclusiva autorización concedida a los editores para su inclusión en la revista. Al someter un artículo, a lo autor será solicitada la permisión electrónica de una Nota de Copyright. Una mensaje electrónica será enviada a lo autor correspondiente confirmando el recibo del manuscrito y lo aceite de la Nota de Copyright.